下一个兴趣点推荐(next POI recommendation)作为基于位置社交网络的主要应用之一,为用户和服务提供商带来了显著的实用价值。现有的POI推荐模型主要依赖于目标用户的历史签到数据进行推荐,没有充分利用其他用户移动轨迹数据的潜在价值...
详细信息
下一个兴趣点推荐(next POI recommendation)作为基于位置社交网络的主要应用之一,为用户和服务提供商带来了显著的实用价值。现有的POI推荐模型主要依赖于目标用户的历史签到数据进行推荐,没有充分利用其他用户移动轨迹数据的潜在价值,也未有效提取和融合时空-类别信息的特征。为了解决上述问题,提出了一种融合人群移动轨迹和时空-类别的下一个兴趣点推荐模型(GGCN-STC)。依据用户的移动轨迹构建区域轨迹图,提出了门控图卷积神经网络对共同移动轨迹进行建模;将签到序列中的时空-类别信息进行多维度的特征融合;利用自注意力机制捕获用户偏好,为用户提供更准确的POI推荐。在两个真实数据集上进行实验比较与分析,结果表明该模型优于其他模型。
近年来,移动边缘计算(Mobile Edge Computing,MEC)技术的持续发展和应用成功地应对了随着终端用户数量急剧增加而导致网络边缘数据量爆炸性增长的用户服务需求.然而,如何实时优化分配这些服务器给不同用户仍然是一个亟待解决的紧迫问题.本文专注于多用户多MEC服务器场景中任务缓存和计算卸载策略的联合优化问题,借助于强化学习算法分别解决这两个子问题.在任务缓存方面,本文以最大化系统缓存命中率为目标,引入了基于Gomory割平面的多臂选择算法(Gomory Based Multi-Arm Selection,GMAS)来适应不同任务数据量的差异,并通过理论证明了算法遗憾上界的对数性.而在任务卸载方面,提出了Dueling架构的双重Q网络(Double DQN with Dueling architecture,D3QN)算法以应对多用户多MEC服务器中的任务卸载问题,该算法在保证任务性能的同时有效规避了DQN算法中Q值过估计的问题.仿真结果表明,本文所提出的算法在时延和能耗等方面相较A3C和DQN算法表现出明显的优势.
暂无评论