[目的/意义]为识别并去除非理性投资者的网络评论,提升评论的专业程度与质量,促进理性投资,本文以识别股吧中的用户是否属于噪声投资者为研究任务,进行用户画像。[方法/过程]对股吧的用户发文内容进行深度用户表示学习(deep user representation learning),结合股吧用户的粉丝数量、影响力、关注量、自选股、吧龄、发帖量、评论量、访问量等行为特征,提出一种行为-内容融合模型(behaviour and content combinedmodel,BCCM),并在标注数据集上进行实证与对比研究。[结果/结论]实验结果显示,该模型对噪声投资者识别的F1值为79.47%,优于决策树方法(69.90%)、SVM方法(75.61%)、KNN方法(73.21%)和ANN方法(74.83%)。在噪声投资者识别这一特定用户画像研究任务中,通过利用深度用户表示学习引入文本内容特征,能够显著提升用户画像的各种评价指标。
[目的/意义]为更好地处理文本摘要任务中的未登录词(out of vocabulary, 00V ),同时避免摘要重复,提高文本摘要的质量,本文以解决00V问题和摘要自我重复问题为研究任务,进行抽象式中文文本摘要研究。[方法/过程]在序列到序列(sequence t...
详细信息
[目的/意义]为更好地处理文本摘要任务中的未登录词(out of vocabulary, 00V ),同时避免摘要重复,提高文本摘要的质量,本文以解决00V问题和摘要自我重复问题为研究任务,进行抽象式中文文本摘要研究。[方法/过程]在序列到序列(sequence to sequence, seq2seq)模型的基础上增加指向生成机制和覆盖处理机制,通过指向生成将未登录词拷贝到摘要中以解决未登录词问题,通过覆盖处理避免注意力机制(attentionmechanism)反复关注同一位置,以解决重复问题。将本文方法应用到LCSTS中文摘要数据集上进行实验,检验模型效果。[结果/结论]实验结果显示,该模型生成摘要的ROUGE ( recall -oriented understudy for gisting evaluation)分数高于传统的seq2seq模型以及抽取式文本摘要模型,表明指向生成和覆盖机制能够有效解决未登录词问题和摘要重复问题,从而显著提升文本摘要质量。
暂无评论