为实现农田生态系统碳通量动态监测,提出一种基于Landsat系列多源遥感数据的农田生态系统碳通量估算方法。以美国东北部内布拉斯加州大学农业研发中心的3块试验田地为研究区域,并结合AmeriFlux公开的对应通量站点数据进行后续建模分析。从气候变量、土壤性质、植物性状3方面综合出发,优选与农田生态系统碳通量密切相关的遥感因子,构建覆盖农田生态过程关键环节的全遥感要素数据集。随后,构建基于随机森林(Random forest,RF)的农田碳通量回归预测模型,相比于岭回归模型和套索模型,该模型在农田生态系统碳通量估算方面效果更优,其决定系数(Coefficient of determination,R^(2))达到0.94,均方根误差(RMSE)为4.281 g/(m^(2)·d)。基于随机森林模型进行因子的重要性分析可知,DVI、NDWI、MSAVI、NRI、NDVI对碳通量估算的贡献度分别为35.6%、25.8%、12.2%、7.8%、5.2%。在以上研究基础上,通过农田生态系统碳收支时空演变特性分析可知,内布拉斯加州2013年作物生育期内的7、8月时农田碳汇能力最强,在种植初期大豆和玉米均呈现弱碳源,且玉米的碳源能力更强,在生长高峰期时玉米和大豆均呈碳汇,且玉米碳汇能力更强。本研究为农田生态系统碳收支精准估算,进而指导农业生产提供理论支持。
为对冬小麦作物-土壤全氮含量进行一体化监测,提出一种基于改进灰狼优化算法(Improved grey wolf optimization algorithm,IGWO)的冬小麦作物-土壤全氮含量共同冠层高光谱特征波长选择方法。以河南省漯河市郾城区的40块拔节期冬小麦农...
详细信息
为对冬小麦作物-土壤全氮含量进行一体化监测,提出一种基于改进灰狼优化算法(Improved grey wolf optimization algorithm,IGWO)的冬小麦作物-土壤全氮含量共同冠层高光谱特征波长选择方法。以河南省漯河市郾城区的40块拔节期冬小麦农田为研究区,通过采集冬小麦冠层反射光谱,结合实验室测定精确全氮含量,利用IGWO算法选择冬小麦作物-土壤共同特征波长。结果表明,相较于遗传算法(Genetic algorithm,GA)等其他仿生学优化算法,改进灰狼优化算法可以选择冬小麦作物-土壤共同冠层反射光谱特征波长。在随机森林(Random forest,RF)回归模型下,冬小麦作物和土壤全氮含量测试集的决定系数(Coefficient of determination,R^(2))分别为0.7888和0.7534。与其他仿生学算法相比,IGWO选择的特征波长405、495、582、731、808 nm预测性能最佳,能够有效利用全谱信息且符合冬小麦生理特征。改进灰狼优化算法能够选择冬小麦作物-土壤共同的冠层反射光谱特征波长,实现对冬小麦作物-土壤全氮含量的较高精度估计,可作为估测田间冬小麦作物-土壤全氮含量的有效途径。
暂无评论