【目的】筛选与陆地棉叶片叶绿素含量性状相关联的分子标记,挖掘其优异等位变异及典型材料,为陆地棉分子标记辅助育种提供技术支持。【方法】在3年6个环境中,对185份陆地棉品种(系)组成的自然群体进行倒4叶叶绿素相对含量(soil and plan...
详细信息
【目的】筛选与陆地棉叶片叶绿素含量性状相关联的分子标记,挖掘其优异等位变异及典型材料,为陆地棉分子标记辅助育种提供技术支持。【方法】在3年6个环境中,对185份陆地棉品种(系)组成的自然群体进行倒4叶叶绿素相对含量(soil and plant analyzer development,SPAD)的测定,每年分3个时期(打顶后0、10和20 d)。采用Power Marker 3.25软件计算各位点的多态性信息含量,以分析群体的遗传多样性。利用STRUCTURE 2.3.4软件计算群体结构矩阵(Q),利用TASSEL 3.0软件计算亲属关系矩阵(K),通过GLM(general linear model,Q)和MLM(mixed linear model,Q+K)2种方法,同时对SPAD与SSR标记进行关联分析。依据计算的等位位点表型效应值,挖掘优异的等位变异及典型材料。【结果】137对SSR多态性引物共扩增出355个等位变异,平均每对引物扩增到2.6个多态性位点,PIC平均值为0.67,变化范围为0.01—0.95,高度多态性引物(PIC>0.5)占85%,其中PIC最高的标记为HAU2146(PIC=0.95)和NAU2083(PIC=0.93)。当(35)K取得最大值时,K=2,因此,将185份陆地棉材料划分为2个亚群。通过GLM方法共检测到22个显著性位点(P<0.001),表型变异解释率为5.28%—10.85%,平均为7.24%,贡献率最高的等位变异位点是SWU0529a(R2=10.85%)和NAU998c(R2=10.48%);通过MLM方法共检测到17个显著性位点(P<0.01),表型变异解释率为3.72%—8.58%,平均为4.72%,贡献率最高的等位变异位点是SWU0923b(R2=8.06%)和SWU0662d(R2=6.74%);2种方法共同检测到的显著性位点有12个,等位变异NAU998c在3个时期2种方法能同时被检测到。通过等位变异的表型效应分析,找到2个增效效应最大的等位变异(HAU3318b和SWU0987b),利用找到的等位变异对材料进行筛选,获得携带2个增效效应等位变异的材料53份,2个增效效应位点都未检测到的材料有46份,统计结果显示,在打顶后10和20 d 2个时期,53份材料的SPAD均值显著高于46份材料的SAPD均值。【结论】检测到12个与SPAD值相关的显著性位点,并挖掘到2个增效效应优异等位变异,获得携带优异等位变异的载体材料53份,获得携带2个优异等位变异的典型材料1份。
叶面积是影响植物光合作用、蒸腾作用、呼吸作用及产量形成的重要形态指标之一,为实现作物叶面积准确、稳定和无损化测量,该研究基于红外线成像设备,提供了一种利用热红外和可见光图像测定棉花叶片面积的方法。以苗期棉花作为研究对象,通过红外成像相机T660获取棉花的热红外和可见光波段的图像,分别使用GrabCut算法和Hough圆检测提取红外图像中叶片和可见光图像中已知实际面积的圆状参照物(五角硬币)的像素面积,进而根据叶片区域和圆状参照物区域的像素倍数关系计算棉花的真实叶面积,将通过该研究所提方法计算的叶面积结果与传统的剪纸称重法、Image Pro Plus软件图像法进行皮尔逊相关性分析,检验该方法的可行性。分析表明,基于所提方法的测量值与剪纸称重法、Image Pro Plus软件图像法的结果之间均存在显著的线性相关关系(P<0.01)(相关系数分别为0.992,0.996)。3种方法对5盆棉花进行8次测量,结果显示,该研究所提方法测量值的平均变异系数为0.78%,在测量工作中表现稳定,为快速获取棉花苗期叶面积提供了一种准确稳健的理论方法。
暂无评论