蚀变分带和成矿机制的准确厘定是建立斑岩成矿模型与找矿预测的关键。本文以新生代金沙江-哀牢山成矿带的玉龙斑岩铜矿为例,通过质量作用定律(LMA)和吉布斯自由能最小化模型(GEM),构建含矿热液与斑岩侵入体的pH-f O 2相图和动态传输模型...
详细信息
蚀变分带和成矿机制的准确厘定是建立斑岩成矿模型与找矿预测的关键。本文以新生代金沙江-哀牢山成矿带的玉龙斑岩铜矿为例,通过质量作用定律(LMA)和吉布斯自由能最小化模型(GEM),构建含矿热液与斑岩侵入体的pH-f O 2相图和动态传输模型,以揭示蚀变分带成因和金属成矿机制。LMA与GEM结果显示初始成矿流体pH值为4.7,logf_(O2)=-23.0(ΔFMQ=+2.7),且溶解Cu含量为1138×10^(-6),Mo为1.2×10^(-6)。研究表明,当该酸性及强氧化性流体流入二长花岗斑岩体时,在温度为450~360℃范围内,代表钾硅酸盐化蚀变的钾长石、黑云母、硬石膏、赤铁矿和磁铁矿的矿物逐渐沉淀,且与钾硅酸盐化蚀变相关流体具有较高pH值(5.0~7.0)和氧逸度(ΔFMQ=+2.9~+3.6)特征;当温度在360~320℃范围时,代表青磐岩化蚀变阶段的典型矿物如绿帘石、铁绿泥石和斜绿泥石等逐渐形成,流体pH值(5.0~6.4)和氧逸度(ΔFMQ=+1.1)均有所下降;当温度进一步从320℃下降到200℃时,流体pH值(5.0~5.7)进一步小幅下降,而氧逸度则(ΔFMQ=+1.7)略有回升,在此期间,绢云母和方解石等开始沉淀并形成典型的绢英岩化蚀变。此外,以HMoO_(4)^(-)和MoO_(4)^(2-)为载体的Mo在狭窄高温区间(450~370℃)内沉淀,而以CuCl(CuCl_(4)^(3-)、CuCl_(2)^(-)、CuCl)为主要载体的Cu则在在中、高温(450~300℃)范围中沉淀。通过利用LMA反演及GEM正演相结合定量化地刻画了玉龙斑岩铜矿水岩反应过程,由此揭示了斑岩矿床蚀变分带是逐渐冷却的单一岩浆热液与斑岩体不断反应的结果,且不同温度窗口对应着钾硅酸盐化(450~360℃)、青磐岩化(360~320℃)和绢英岩化(320~200℃)蚀变矿物的形成,故含矿流体温度的快速下降可能是玉龙铜矿蚀变叠加的重要因素。此外,Cu、Mo络合离子溶解度对温度变化的差异响应,导致了Mo矿化主要发育于靠近斑岩体的高温区域,而Cu则以网脉状-浸染状叠加到Mo矿化之上,并广泛分布于斑岩体周边的高-中温区域。
岩石颜色不仅反映沉积环境而且指示特有矿物与元素,是纵向横向沉积演化,地层对比的重要依据和指标之一。目前岩石颜色主要依赖肉眼识别和主观描述,或使用色卡进行对比判读。这些方法受个体差异和环境影响较大,缺少定量计算方法,无法满足颜色批量精准识别的需要。因此快速、批量、高效实现颜色的客观识别和数值量化对地质工作研究和应用具有重要意义。该研究基于色度学原理,利用光谱分析技术,结合Python计算机语言编译的岩石颜色定量化识别软件,实现岩石颜色的数值定量化和批量自动化转换,提高颜色的判断精度和识别效率。通过对《Munsell Rock Book》对比发现,CIE RGB颜色系统计算结果与色卡一致性较高,Munsell系统计算结果中色相值(<3个NBS单位)一致性达到86.7%,明度值和纯度值的一致性分别达到92.2%和82.2%,相关性为98.83%和87.50%,均属于较小色差范围。相较于Munsell系统计算结果,31个岩石样品的CIE RGB计算结果与样品颜色的一致性和准确性更高。造成颜色差异的原因复杂多样,不仅与颜色系统之间的转换误差和人为主观对比及判读有关,而且与岩石样品的特殊性和环境等因素密切相关。本次研究为岩石颜色的快速、高效、客观批量化和定量化表征提供了一种可行性方法和思路,具有较好的应用价值。
暂无评论