中国人工林面积居世界第一,精确地对人工林结构进行监测具有重要意义。本研究以内蒙古自治区赤峰市旺业甸林场内的落叶松和油松人工林为研究对象,利用无人机激光雷达LiDAR(Light Detection And Ranging)离散点云数据和地面样地调查数据...
详细信息
中国人工林面积居世界第一,精确地对人工林结构进行监测具有重要意义。本研究以内蒙古自治区赤峰市旺业甸林场内的落叶松和油松人工林为研究对象,利用无人机激光雷达LiDAR(Light Detection And Ranging)离散点云数据和地面样地调查数据对人工林林分高进行建模,通过点云特征变量与地面测量的6种林分高(包括:Lorey’s高、算术平均高、最大高、优势树高、中位数高和树冠面积加权高)间的Pearson’s相关性筛选自变量,然后利用全子集回归构建不同林分高估测模型,并采用交叉检验法进行精度评价。结果表明:激光雷达点云高度百分位数与不同林分高相关性均较高,通过一元线性回归构建的不同林分高结果最优,且估测模型的自变量均为高度特征变量。Lorey’s高(R^(2)=0.91—0.97,rRMSE=2.75%—3.96%)、优势树高(R^(2)=0.86—0.97,rRMSE=3.72%—3.83%)和树冠面积加权高(R^(2)=0.86—0.96,rRMSE=3.81%—4.73%)估测精度最高,算术平均高(R^(2)=0.85—0.94,rRMSE=4.52%—6.07%)和中位数高(R^(2)=0.80—0.95,rRMSE=5.37%—7.34%)次之,最大高(R^(2)=0.69—0.87,rRMSE=6.19%—8.09%)最低。针对不同森林类型,落叶松人工林林分高估测精度最优,优于不区分森林类型模型的估测精度(ΔR^(2)=0—0.05,ΔrRMSE=-0.69%—1.97%),优于油松林林分高模型的估测精度(ΔR^(2)=0.06—0.18,ΔrRMSE=-1.90%—1.13%)。无人机激光雷达可以用于估测北方温带针叶林的林分高,能够满足人工林资源调查快速、精确的要求。
森林火灾是一种危害极大的自然灾害,是森林扰动的主要类型之一,直接影响森林生态系统结构、碳循环甚至全球气候的变化。近年来,航空平台和传感器的技术进步有效地提升了机载遥感系统探测和监测森林火灾的能力,推动了机载遥感在森林可燃物调查及载量评估、火险测报预测、火场态势及火情监测、灾害损失评估以及火烧迹地生态修复治理等方面的应用。本文首先介绍了中国林业科学研究院机载光学全谱段遥感系统CAF-LiTCHy(Chinese Academy of Forestry’s LiDAR,Thermal,CCD and Hyperspectral airborne observation system),描述了激光雷达扫描仪、热红外相机、CCD相机和高光谱传感器等传感器的参数;然后,阐明了集成方案和观测数据的处理方法;最后,以四川省西昌市"3.30森林火灾"作为该系统火后灾情遥感调查和灾情评估应用示例,综合多传感器数据特征,进行森林火烧程度评价,分析该系统采集的正射影像、冠层高度模型、高光谱影像、热红外影像在森林火灾监测评价中的潜力。研究结果表明CAF-LiTCHy机载遥感观测系统能有效获取森林火灾的灾情信息、火场及火环境参数,可为预防、预报预警、扑救指挥、灾害评估和生态修复提供支持。
暂无评论