森林火灾是一种危害极大的自然灾害,是森林扰动的主要类型之一,直接影响森林生态系统结构、碳循环甚至全球气候的变化。近年来,航空平台和传感器的技术进步有效地提升了机载遥感系统探测和监测森林火灾的能力,推动了机载遥感在森林可燃物调查及载量评估、火险测报预测、火场态势及火情监测、灾害损失评估以及火烧迹地生态修复治理等方面的应用。本文首先介绍了中国林业科学研究院机载光学全谱段遥感系统CAF-LiTCHy(Chinese Academy of Forestry’s LiDAR,Thermal,CCD and Hyperspectral airborne observation system),描述了激光雷达扫描仪、热红外相机、CCD相机和高光谱传感器等传感器的参数;然后,阐明了集成方案和观测数据的处理方法;最后,以四川省西昌市"3.30森林火灾"作为该系统火后灾情遥感调查和灾情评估应用示例,综合多传感器数据特征,进行森林火烧程度评价,分析该系统采集的正射影像、冠层高度模型、高光谱影像、热红外影像在森林火灾监测评价中的潜力。研究结果表明CAF-LiTCHy机载遥感观测系统能有效获取森林火灾的灾情信息、火场及火环境参数,可为预防、预报预警、扑救指挥、灾害评估和生态修复提供支持。
以国产高分一号(GF-1)宽幅数据(wide field of view,WFV)为数据源,采用简单生物圈模型2(simple biosphere model2,SiB2)对黑龙江省漠河县森林植被叶面积指数(leaf area index,LAI)进行估算,并与增强植被指数(enhanced vegetation index,...
详细信息
以国产高分一号(GF-1)宽幅数据(wide field of view,WFV)为数据源,采用简单生物圈模型2(simple biosphere model2,SiB2)对黑龙江省漠河县森林植被叶面积指数(leaf area index,LAI)进行估算,并与增强植被指数(enhanced vegetation index,EVI)线性模型的估算结果进行对比,结合地面实测LAI数据分别对这2种模型估算结果进行精度评价。结果表明,采用EVI线性模型估算LAI,决定系数R 2为0.582,均方根误差(root mean square error,RMSE)为0.701;而采用SiB2模型估算LAI,R 2为0.798,RMSE为0.358,均比EVI线性模型有所改善。该研究发现,结合中高空间分辨率的GF-1 WFV数据,SiB2模型更适宜于该研究区森林植被的LAI反演。
暂无评论