为了提高轴承故障诊断准确率,缩短神经网络训练时间,将周期能量特征和优化的局域均值分解(local mean decomposition,简称LMD)特征结合,提出了一种新的轴承故障诊断方法。首先,采用形态滤波法对振动信号去噪;其次,以轴承一个旋转周期采...
详细信息
为了提高轴承故障诊断准确率,缩短神经网络训练时间,将周期能量特征和优化的局域均值分解(local mean decomposition,简称LMD)特征结合,提出了一种新的轴承故障诊断方法。首先,采用形态滤波法对振动信号去噪;其次,以轴承一个旋转周期采样点数为标准,对振动信号进行截取,提取周期能量特征和LMD特征;然后,对提取的特征进行u律压扩和滑动平均优化处理;最后,设计两个同精度神经网络,采用经优化和未优化的特征对设计好的RBF神经网络进行训练,用训练好的神经网络进行故障诊断。实验结果表明,神经网络收敛迭代次数减少了50次,诊断正确率提高了10%,提高了轴承故障诊断正确率,缩短了神经网络训练时间。
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法...
详细信息
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。
暂无评论