目的随着视觉感知技术的快速发展,无人驾驶已经可以应用于简单场景。但是在实际的复杂城市道路应用中,仍然存在一些挑战,尤其是在其他车辆的突然变道、行人的闯入、障碍物的出现等突发紧要场景中。然而,真实世界中此类紧要场景数据存在长尾分布问题,导致数据驱动为主的无人驾驶风险感知面临技术瓶颈,因此,本文提出一种基于平行视觉的风险增强感知方法。方法该方法基于交互式ACP(artificial societies,computational experiments,parallel execution)理论,在平行视觉框架下整合描述、指示、预测智能,实现基于视觉的风险增强感知。具体地,基于描述与指示学习,在人工图像系统中引入改进扩散模型,设计背景自适应模块以及特征融合编码器,通过控制生成行人等危险要素的具体位置,实现突发紧要场景风险序列的可控生成;其次,采用基于空间规则的方法,提取交通实体之间的空间关系和交互关系,实现认知场景图的构建;最后,在预测学习框架下,提出了一种新的基于图模型的风险增强感知方法,融合关系图注意力网络和Transformer编码器模块对场景图序列数据进行时空建模,最终实现风险的感知与预测。结果为验证提出方法的有效性,在MRSG-144(mixed reality scene graph)、IESG(interaction-enhanced scene graph)和1043-carla-sg(1043-carla-scenegraph)数据集上与5种主流风险感知方法进行了对比实验。提出的方法在3个数据集上分别取得了0.956、0.944、0.916的F1-score,均超越了现有主流方法,达到最优结果。结论本文是平行视觉在无人驾驶风险感知领域的实际应用,对于提高无人驾驶的复杂交通场景风险感知能力,保障无人驾驶系统的安全性具有重要意义。
近期,以ChatGPT为代表的大模型技术正开启人类社会智能化的新纪元。研究人工智能成功案例背后的技术原理,探索人工智能驱动的科学研究(AI for Science,AI4S)新范式,对促进我国科技进步、增强国家竞争力具有十分重要的意义。文章首先以...
详细信息
近期,以ChatGPT为代表的大模型技术正开启人类社会智能化的新纪元。研究人工智能成功案例背后的技术原理,探索人工智能驱动的科学研究(AI for Science,AI4S)新范式,对促进我国科技进步、增强国家竞争力具有十分重要的意义。文章首先以数学、物理学、生物学、材料科学领域为例,简述AI4S的研究进展。其次,面向近年来最为成功的人工智能范例,分析AlphaFold和ChatGPT的基本原理和关键技术。最后,在以上分析的基础上,从算法、模型、数据、知识、人的因素等角度,总结大模型时代人工智能技术发展新趋势,探讨AI4S研究新范式。
智能大模型技术作为智能产业与新质生产力的典型代表,正掀起人类社会变革的新浪潮,并加速推动科学研究范式的转变,在人工智能驱动的科学研究(AI for Science,AI4S)中起着越来越重要的作用,推动以“三个世界、三种技术、三类科学家、三...
详细信息
智能大模型技术作为智能产业与新质生产力的典型代表,正掀起人类社会变革的新浪潮,并加速推动科学研究范式的转变,在人工智能驱动的科学研究(AI for Science,AI4S)中起着越来越重要的作用,推动以“三个世界、三种技术、三类科学家、三种模式”为特点的平行科学新范式的形成。从虚实互动之平行智能的角度看,大模型技术在数学、生物学、健康与医学、化学、材料科学和天文学等领域都取得了一定的成绩。未来应基于平行科学的“三个世界”,利用“三类知识”,整合“三类科学家”,构建服务于AI4S研究的智能生态系统,特别是联邦生态系统的基本框架。
暂无评论