知识库问答(Knowledge Base Question Answering,KBQA)借助知识库中精度高、关联性强的结构化知识,为给定的复杂事实型问句提供准确、简短的答案.语义解析是知识库问答的主流方法之一,该类方法在给定的问句语义表征形式下,将非结构化的...
详细信息
知识库问答(Knowledge Base Question Answering,KBQA)借助知识库中精度高、关联性强的结构化知识,为给定的复杂事实型问句提供准确、简短的答案.语义解析是知识库问答的主流方法之一,该类方法在给定的问句语义表征形式下,将非结构化的问句映射为结构化的语义表征,再将其改写为知识库查询获取答案.目前,面向知识库问答的语义解析方法主要面临三个挑战:首先是如何选择合适的语义表征形式以表达问句的语义,然后是如何解析问句的复杂语义并输出相应的语义表征,最后是如何应对特定领域中数据标注成本高昂、高质量数据匮乏的问题.本文从上述挑战出发,分析了知识库问答中常用的语义表征的特点与不足,然后梳理现有方法并总结分析其如何应对问句的复杂语义,接着介绍了当前方法在标注数据匮乏的低资源场景下的尝试,最后展望并讨论了面向知识库问答的语义解析的未来发展方向.
ROC曲线下面积(Area Under the ROC Curve,AUC)是类不均衡/二分排序等问题中的标准评价指标之一.本文主要聚焦于半监督AUC优化方法.现有大多数方法局限于通过单一模型进行半监督AUC优化,对如何通过模型集成技术融合多个模型则鲜有...
详细信息
ROC曲线下面积(Area Under the ROC Curve,AUC)是类不均衡/二分排序等问题中的标准评价指标之一.本文主要聚焦于半监督AUC优化方法.现有大多数方法局限于通过单一模型进行半监督AUC优化,对如何通过模型集成技术融合多个模型则鲜有涉及.考虑上述局限性,本文主要研究基于模型集成的半监督AUC优化方法.具体而言,本文提出一种基于Boosting算法的半监督AUC优化算法,并提出基于权重解耦的加速策略以降低算法时间/空间复杂度.进一步地,在优化层面,本文通过理论分析证明了所提出的算法相对于弱分类器的增加具有指数收敛速率;在模型泛化能力层面,本文构造了所提出算法的泛化误差上界,并证明增加弱分类器个数在提升训练集性能的同时并不会带来明显的过拟合风险.最后,本文在16个基准数据集上对所提出算法的性能进行了验证,实验结果表明所提出算法在多数情况下以0.05显著水平优于其他对比方法,并可在平均意义上产生0.9%~11.28%的性能提升.
暂无评论