论辩挖掘可分为论点边界的检测、论点类型的识别、论点关系的抽取三个子任务.现有的工作大多数对子任务分别建模研究,忽略了三个子任务之间的关联信息,导致性能低下.另外,还有部分的工作采用流水线模型把三个子任务进行联合建模,由于流水线模型仍然是独立的看待每个子任务,为每个子任务训练单独的模型,存在错误传播的问题,且在训练过程中产生了冗余信息.因此,本文提出了一种基于多任务迭代学习的论辩挖掘方法.该方法将论辩挖掘三个任务并行地联合在一起学习,首先通过深度卷积神经网络(CNN)和高速神经网络(Highway Network),获得文本字符和词级别的浅层共享参数表示;然后输入双向长短时记忆循环神经网络(Bi-LSTM),利用论辩挖掘三个任务之间的关联信息进行同时训练,不仅可以避免错误传播,而且能够克服冗余信息的产生;最后,联结三个任务的Bi-LSTM网络输出作为下一次迭代的输入,来提高模型的性能.实验采用了德国UKP实验室公开的学生论文数据集,实验结果表明,与目前最好的基准方法对比,该方法的准确率指标提高了2.74%,“ F1 (100%)”和“ F1 (50%)”指标分别提高了1.05%和1.19%,很好地验证了该方法的有效性。
关于舆情事件的新闻数据是纷繁复杂的.即便是关于同一舆情事件的新闻数据,往往包含有不同的子话题(事件的不同侧面).因此,如何生成能够准确描述事件子话题含义的标签对深入分析舆情事件(包括掌握事件热点、监测发展走向等)具有重要意义.事件子话题标签的生成通常包括两个关键步骤:首先发现子话题,然后依据每个子话题的关键词或文档内容生成描述该子话题的有效标签.传统方法在发现话题时多采用聚类或分类的方法,它们将同一个话题的文档整合到一个簇中.然而,由于隶属同一事件的文档具有很强的相似性,现有方法难以度量他们之间的距离,因此无法应用于发现事件子话题这一任务.此外,在为子话题生成标签时,传统的方法通常通过抽取来实现.此类方法所生成标签的准确性无法保证.为此,该文提出了一种基于PLSA with Background Language并结合关键词聚类发现事件内部子话题,进而基于维基百科等知识库生成事件子话题标签的模型ET-TAG.在多类舆情事件数据集上的实验结果表明,ET-TAG算法相比K-means和LDA等已有子话题发现方法具有更好的性能;从子话题标签生成角度而言,ET-TAG生成的标签相对于传统方法也具有更好的准确性和概括性.该文最后将ET-TAG算法生成的子话题标签用于事件的对比和追踪,结果表明通过子话题标签可以发现事件共性,并反映事件子话题热度的变化趋势.
暂无评论