面向能耗优化的面积(核数)-功率(频率)分配问题是当前众核处理器研究热点之一.通过性能-功耗模型了解其在核数-频率空间的分布规律,然后在核数和频率级别这2个维度上通过实测执行逐步搜索,可以获取"核数-频率"配置的最优解,从而达到能耗优化的目的;然而本领域现有方法在核数-频率空间内实测搜索最低能耗时收敛速度慢、搜索开销大、可扩展性差.针对此问题,提出了一种基于求解最优化问题的经典数学方法——可行方向法的最低能耗搜索方法(energy-efficient optimization based on feasible direction method,EOFDM),每次执行都能从核数和频率2个维度上同时减小搜索空间,在迭代执行中快速收敛至最低能耗点.该方法与现有研究中最优的启发式爬山法(hill-climbing heuristic,HCH)进行了对比实验,平均执行次数、执行时间和能耗分别降低39.5%,46.8%,48.3%,提高了收敛速度,降低了搜索开销;当核数增加一倍时,平均执行次数、执行时间和能耗分别降低48.8%,51.6%,50.9%;当频率级数增加一倍时,平均执行次数、执行时间和能耗分别降低45.5%,49.8%,54.4%,在收敛速度、搜索开销和可扩展性方面均有提高.
针对现场可编程门阵列(FPGA)原型系统中内存刷新频率过高导致内存延迟变大的问题,提出了一种校准处理器FPGA原型系统性能的方法,搭建了一个精确的FPGA原型性能验证平台,可用于硅前快速准确地评估处理器系统性能。问题的根本原因是FPGA原型系统同时存在真实墙上时钟和由运行频率降低导致的伪墙上时钟,且在内存系统中刷新和访问请求分别按照两个时钟进行,然而真实机器上这两种请求都是按照真墙上时钟进行,因此FPGA内存系统有性能误差。本文通过将两个墙上时钟分离来实现校准,该校准方法准确度高、通用性强,校准后的FPGA原型系统运行SPEC CPU 2006基准测试程序性能分值平均误差由7.49%降至0.36%,最高误差降至2%以下,可快速有效地指导硅前性能优化。
基于固态硬盘(solid-state drive,SSD)和硬盘(hard disk drive,HDD)混合存储的数据中心已经成为大数据计算领域的高性能载体,数据中心负载应该可将不同特性的数据按需持久化到SSD或HDD,以提升系统整体性能.Spark是目前产业界广泛使用的...
详细信息
基于固态硬盘(solid-state drive,SSD)和硬盘(hard disk drive,HDD)混合存储的数据中心已经成为大数据计算领域的高性能载体,数据中心负载应该可将不同特性的数据按需持久化到SSD或HDD,以提升系统整体性能.Spark是目前产业界广泛使用的高效大数据计算框架,尤其适用于多次迭代计算的应用领域,其原因在于Spark可以将中间数据持久化在内存或硬盘中,且持久化数据到硬盘打破了内存容量不足对数据集规模的限制.然而,当前的Spark实现并未专门提供显式的面向SSD的持久化接口,尽管可根据配置信息将数据按比例分布到不同的存储介质中,但是用户无法根据数据特征按需指定RDD的持久化存储介质,针对性和灵活性不足.这不仅成为进一步提升Spark性能的瓶颈,而且严重影响了混合存储系统性能的发挥.有鉴于此,首次提出面向SSD的数据持久化策略.探索了Spark数据持久化原理,基于混合存储系统优化了Spark的持久化架构,最终通过提供特定的持久化API实现用户可显式、灵活指定RDD的持久化介质.基于SparkBench的实验结果表明,经本方案优化后的Spark与原生版本相比,其性能平均提升14.02%.
暂无评论