工业控制系统(Industrial control systems,ICS)在现代工业生产中发挥关键作用,负责监控和控制工业过程,确保高效、安全和稳定的生产.随着工业4.0和智能制造的发展,传统工业控制方法难以应对日益复杂且动态变化的生产环境.深度强化学习(...
详细信息
工业控制系统(Industrial control systems,ICS)在现代工业生产中发挥关键作用,负责监控和控制工业过程,确保高效、安全和稳定的生产.随着工业4.0和智能制造的发展,传统工业控制方法难以应对日益复杂且动态变化的生产环境.深度强化学习(Deep reinforcement learning,DRL)结合了深度学习与强化学习的优势,在工业智能控制领域展现出巨大潜力.本文综述了DRL在工业智能控制中的应用现状和研究进展.首先介绍了DRL的基本原理及相关算法,并简述工业控制的背景,分析智能控制的应用需求与现存挑战.随后,详细综述了DRL在工业领域的应用,并对当前研究进行了总结,最后对未来研究方向提出了展望.
针对文本分类数据非均衡问题,在数据层面提出一种新的基于大模型的样本平衡算法——LMSBA算法(Based on Large Model Sample Balancing Algorithm)。LMSBA算法是一种新型的样本平衡方法,旨在解决文本分类中的类别不平衡问题。该算法通...
详细信息
针对文本分类数据非均衡问题,在数据层面提出一种新的基于大模型的样本平衡算法——LMSBA算法(Based on Large Model Sample Balancing Algorithm)。LMSBA算法是一种新型的样本平衡方法,旨在解决文本分类中的类别不平衡问题。该算法通过生成少数类样本和筛选多数类样本,有效实现样本均衡化,同时利用特定提示词引导模型结合样本的生成与筛选。实验结果显示,在FastText、TextCNN、TextRNN和TextRCNN 4种文本分类模型上,LMSBA算法使宏平均F 1分数平均提高约37.37百分点,证明了其在处理非均衡样本问题上的有效性。
暂无评论