第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文...
详细信息
第五代移动通信技术(5th-generation mobile communication technology,5G)网络对高速率、低时延、高可靠性的移动通信处理需求不断增加,对终端基带信道估计算法的高性能和低复杂度设计、矩阵处理动态范围提出挑战。针对上述问题,本文提出一种基于相关矩阵托普利兹(Toeplitz)特性的信道估计算法。依据信道的相干带宽特性计算信道相关矩阵并保留必要的较低矩阵阶数;基于相关矩阵的Toeplitz特性设计低复杂度的递归求逆算法,并针对加权矩阵乘法的元素重复性将矩阵乘法化简为矩阵点乘,简化加权矩阵运算;同时引入跟踪信噪比变化的缩放补偿因子对计算过程和结果分别进行缩放和补偿。理论分析和仿真结果显示,本文所提算法可在达到优异的信道估计性能条件下,有效降低运算复杂度,并极大降低算法矩阵处理的动态范围。
根据超声心动图准确分析左心室轮廓和射血分数对于心血管疾病诊断意义重大.但现有方法存在左心室分割和射血分数预测之间缺乏关联性、左心室分割关键点易于出现离群点和突变点、方法存储和计算开销大、解释性不佳等问题,为此提出一种基于先验知识引导的轻量级图卷积方法EchoGPK(Echo Guided by Priori Knowledge),以心脏的结构和运动特性、相邻心肌的相似性等先验知识为引导,设计了计算高效的螺旋聚合函数和深度压缩的多头偏心聚合解码器,实现了图卷积结构的轻量化.方法基于临床医生的普遍经验提出了适度利用左心室轮廓的多任务射血分数预测网络,建立了左心室分割和射血分数预测之间的关联性,增强了推理的可解释性;基于图卷积神经网络的传递特性约束邻居点的行为,减少了边界离群点和突变点的产生.EchoGPK在大型公开数据集EchoNet-Dynamic上的实验结果表明,左心室分割的Dice分数达92.13%,射血分数预测的MAE达3.92%;方法表现出准确率高、参数量和算力需求低等特点,证明了先验知识在超声医学图像分析中的有效性.
暂无评论