芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软件工具链是芯片解决方案的组成部分,并在芯片性能和开发中发挥重要作用.然而,当使用第三方芯粒进行芯片敏捷定制时,第三方芯粒所提供的专用工具链无法预知整个芯片的资源,因此无法解决敏捷定制的深度学习芯片的任务部署问题,而为敏捷定制的芯片设计全新的工具链需要大量的时间成本,失去了芯片敏捷定制的优势.因此,提出一种面向深度学习集成芯片的可扩展框架(scalable framework for integrated deep learning chips)--Puzzle,它包含从处理任务输入到运行时管理芯片资源的完整流程,并自适应地生成高效的任务调度和资源分配方案,降低冗余访存和芯粒间通信开销.实验结果表明,该可扩展框架为深度学习集成芯片生成的任务部署方案可自适应于不同的工作负载和硬件资源配置,与现有方法相比平均降低27.5%的工作负载运行延迟.
基于WLAN(Wireless Local Area Networks)的无线定位是移动互联网领域的重要研究内容之一.其中,指纹定位方法已成为主流,此类方法的特点之一在于需要离线训练数据与在线测试数据具有严格的一致性.但在实际环境中,无线信号数据波动较大,...
详细信息
基于WLAN(Wireless Local Area Networks)的无线定位是移动互联网领域的重要研究内容之一.其中,指纹定位方法已成为主流,此类方法的特点之一在于需要离线训练数据与在线测试数据具有严格的一致性.但在实际环境中,无线信号数据波动较大,存在显著的时效性问题.这导致一定时间后,定位模型的预测精度不断下降.文中提出一种具有时效机制的增量式定位方法(Timeliness Managing Extreme Learning Machine,TMELM),一方面满足实际系统的应用需求,可随时加入新的训练数据进行在线增量式学习,另一方面融入时效机制,以最大化新增训练数据对定位模型的贡献,保持定位模型的精度.实验表明,在实际WLAN定位数据集上,文中方法相比于传统的几种增量式学习方法,具有明显的时效优势,能获得更好的定位精度.
暂无评论