随着信息技术的飞速发展,互联网成为了舆情传播的主要载体.各种舆情事件不断涌现,并在网民的参与下广泛传播,由此可能引发强烈的社会反响.因此,如何实现网络舆情事件快速发现与个性化监测需求的精准推送,成为了当前舆情的重点关注内容.对于舆情场景下用户交互信息稀疏导致的兴趣难以刻画的问题,提出了一种基于层次知识的话题推荐模型.模型通过引入层次知识来扩充语义增加话题之间的潜在信息关联,分别对层次知识、话题和用户建模得到对应的嵌入向量表示,再结合多层感知机匹配模型预测用户点击率.实验结果表明,该模型在与多个基线算法的对比中,在F1(the balanced F score)和AUC(the area under curve)指标的平均值上分别提升了6.7%和4.9%.
事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且无法保证整体时序关系的全局一致性.针对此问题,提出一种融合上下文信息的篇章级事件时序关系抽取方法,使用基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)的神经网络模型学习文章中事件对的时序关系表示,再利用自注意力机制融入上下文中其他事件对信息,从而得到更丰富的事件对时序关系表示用于时序关系分类.通过TB-Dense(timebank dense)和MATRES(multi-axis temporal relations for start-points)数据集的实验表明:此方法能够取得比当前主流的句子级方法更佳的抽取效果.
知识蒸馏的核心思想是利用1个作为教师网络的大型模型来指导1个作为学生网络的小型模型,提升学生网络在图像分类任务上的性能.现有知识蒸馏方法通常从单一的输入样本中提取类别概率或特征信息作为知识,并没有对样本间关系进行建模,造成网络的表征学习能力下降.为解决此问题,本文引入图卷积神经网络,将输入样本集视为图结点构建关系图,图中的每个样本都可以聚合其他样本信息,提升样本的表征能力.本文从图结点和图关系2个角度构建图表征知识蒸馏误差,利用元学习引导学生网络自适应学习教师网络更佳的图表征,提升学生网络的图建模能力.相比于基线方法,本文提出的图表征知识蒸馏方法在加拿大高等研究院(Canadian Institute For Advanced Research,CIFAR)发布的100种分类数据集上提升了3.70%的分类准确率,表明本文方法引导学生网络学习到了更具有判别性的特征空间,提升了图像分类能力.
暂无评论