车辆事故预测是避免道路车辆事故发生的重要研究课题.以往的研究使用的事故数据集只包含地理情况、环境情况、交通情况等宏观因素,或者只包含车辆行为和驾驶员行为等微观因素.因为很难收集到同时包含2类因素的事故数据集,很少有研究将这2类因素结合起来,然而车辆事故往往是两者共同作用的结果.此外,在收集到的数据中没有可以用于预测的事故发生概率标签,所以目前多数的研究关注点只是在于事故是否发生而不能得到准确的概率值.然而在实际应用场景下,驾驶员需要的是不同级别的危险预警信号,而这种信号正是应该由事故概率值决定的.2019年发布的事故宏观因素数据集OSU(Ohio State University)与宏观因素数据集FARS(fatality analysis reporting system)和微观因素数据集SHRP2(strategic highway research program 2)都具有一些相同的特征,为它们的融合提供了机遇.因此,首先得到了一个同时包含宏观和微观因素的数据集,其中事故数据(正样本)融合自OSU、FARS数据集,以及与SHRP2分布相同的数据集Sim-SHRP2(simulated strategic highway research program 2),而安全驾驶数据(负样本)则由自己驾驶汽车获得.然后,针对收集到的数据中没有概率标签的问题,还设计了一个概率级别的无监督深度学习框架来预测准确的概率值,该框架使用迭代的方式为数据集生成准确的概率标签,并使用这些概率标签来进行训练.实验结果表明,该框架可以使用所得到的数据集来灵敏而准确地预测车辆事故.
采用图神经网络模型为整个语料库构建异构图处理文本分类任务时,存在难以泛化到新样本和词序信息缺失的问题。针对上述问题,提出了一种融合双图特征和上下文语义信息的文本分类模型。首先,为每个文本独立构建共现图和句法依存图,从而实现对新样本的归纳式学习,从双图角度捕获文本特征,解决忽略单词间依存关系的问题;其次,利用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)编码文本,解决忽略词序特征和难以捕捉上下文语义信息的问题;最后,融合双图特征,增强图神经网络模型的分类性能。在MR,Ohsumed,R8,R52数据集上的实验结果表明,相较于经典的文本分类模型,该模型能够提取更丰富的文本特征,在准确率上平均提高了2.17%,5.38%,0.61%,2.48%。
暂无评论