针对成捆原木自动化检尺中原木端面径级检测的关键问题,采用双目立体视觉及图像分割的原理,完成原木径级的快速三维测量.根据原木的直方图特征,提出基于最大熵阈值分割的区域标识算法,设定动态阈值,实现对原木端面与背景的精确分割.将提取的左右图像中原木端面边缘,借助ORB(Oriented FAST and Rotated BRIEF)特征点检测方法,与极线几何理论相结合完成原木边缘的快速立体匹配,得到三维坐标.此外以成捆原木为检测对象,进行原木边缘图像的最小二乘法椭圆拟合,确定原木端面长、短径参数.实验结果表明:该算法能够在10s内完成原木径级的检测,测量误差在2mm内.
本文描述了一个基于分层语块分析的统计翻译模型。该模型在形式上不仅符合同步上下文无关文法,而且融合了基于条件随机场的英文语块分析知识。因此基于分层语块分析的统计翻译模型做到了将句法翻译模型和短语翻译模型有效地结合。该系统的解码算法改进了线图分析的 CKY 算法,融入了线性的 N-gram 语言模型。目前,本文主要针对中文—英文的口语翻译进行了一系列实验,并以国际口语评测 IWSLT (International Workshop on Spoken Language Translation)为标准,在2005年的评测测试集上,BLEU 和 NIST 得分均比统计短语翻译系统有所提高。
暂无评论