随着定位技术和传感器的高速发展,用户移动轨迹数据日渐丰富,但大多分散在不同平台上。为了全面利用这些数据并准确反映用户的真实行为,对轨迹用户匹配的研究变得至关重要。该任务旨在从海量签到轨迹数据中精准关联用户身份。近年来,研究者们尝试运用循环神经网络、注意力机制等方法深入挖掘轨迹数据。然而,当前方法在处理用户签到轨迹时面临两大挑战:一是签到数据中有限的时空特征不足以从主观和客观两个角度全面地建模签到点信息,二是用户的签到轨迹往往围绕着一个特定的主题。针对这两点挑战,提出了一种基于自然语言增强的轨迹用户匹配模型(Natural Language Augmented Trajectory User Link,NLATUL)。首先,设计了一套自然语言模板与软提示令牌来描述签到轨迹,并使用语言模型来理解签到点中的主观意图,融合用户的时空状态,提供了一种充分从主观与客观两个方面建模签到点的方法;在此基础上,通过提示学习的方法推理签到轨迹的主题,并对建模的签到点表示的轨迹进行双向编码,通过签到轨迹主题与签到轨迹编码的结合实现对用户签到轨迹的准确理解。在两个真实世界签到数据集上验证的实验结果表明,NLATUL能够更准确地匹配签到轨迹与其对应的用户。
近年来,卷积神经网络在实验室控制环境下的人脸表情识别任务中取得了很大进步,但是在自然场景中人脸表情识别方面仍然存在一些挑战.针对自然场景中人脸表情数据分布不平衡,以及由姿势、光照和性别等因素引起的类内差异大的问题,提出类别均衡与局部中值(class-balanced and local median,CALM)损失函数.CALM损失函数包含类别均衡Softmax损失函数和局部中值损失函数2个部分.其中,类别均衡Softmax损失函数将数据量较少且容易错分的害怕和厌恶2种表情标记为难样本,将其余5种表情标记为易样本;在网络训练过程中对难样本自适应地增大权重,以提高难样本的识别准确率,进而提高表情识别的平均准确率.此外,在每个类别中会有一些离类别内大多数样本较远的样本,它们的存在会导致用均值方法计算出的类别中心偏离类内大多数样本.在局部中值损失函数中,采用与每个样本属于同类别的若干近邻的中值作为类别中心,在一定程度上减弱离群样本对类别中心选择的影响.在RAF(real-world affective faces)数据集上进行实验,与局部子类方法相比,该方法的平均识别准确率提升了1.32%,证明了该方法的有效性.
暂无评论