Pot experiments were conducted to investigate the influence of Si fertilizer on yield and N-uptake and use efficiency of double-season rice under the conditions of equal nitrogen, phosphorus and potassium nutrients. T...
详细信息
Pot experiments were conducted to investigate the influence of Si fertilizer on yield and N-uptake and use efficiency of double-season rice under the conditions of equal nitrogen, phosphorus and potassium nutrients. The results showed that along with the increase of Si fertilizer application, the yield of early and late rice increased firstly and then decreased within the range of SiO2 application rate of 0-0.8 g/kg soil. There was a significant parabolic correlation between the amounts of Si fertilizer application and rice grain yield (r= 0.931 2 and r= 0.973 3 in early-and late-rice season, respectively). Results showed that efficient Si fertilizer application enchanced N contents in different plant components of early rice at maturity stages with increased nitrogen uptake of double cropping rice and nitrogen harvest index of late rice.
以春光1号水稻为供试种子,链霉菌JD211为供试菌,通过浅盘试验研究链霉菌JD211对水稻生物量和土壤细菌多样性的影响。结果表明:菌剂用量10 g kg-1对水稻幼苗的生长有极显著的促进作用,幼苗总干重、地上部分干重、地下部分干重与对照相比...
详细信息
以春光1号水稻为供试种子,链霉菌JD211为供试菌,通过浅盘试验研究链霉菌JD211对水稻生物量和土壤细菌多样性的影响。结果表明:菌剂用量10 g kg-1对水稻幼苗的生长有极显著的促进作用,幼苗总干重、地上部分干重、地下部分干重与对照相比分别提高52.15%、44.56%、65.55%,植株全氮、全磷分别提高90.10%、58.51%。与CK土壤相比,菌剂用量10 g kg-1的土壤速效氮、有效磷均有显著提高,分别提高了37.49%、40.62%。细菌多样性的末端限制性片段长度多样性(T-RFLP)分析表明链霉菌JD211能促进一些稀有或生态势较弱的细菌生长,使参与土壤营养循环、改善土壤质地及防治植物病害的功能菌成为优势菌群。土壤功能微生物类群的变化,加速了N、P等土壤养分循环,增强了水稻对N、P等矿质养分的吸收,从而促进水稻生长。
暂无评论