随着自然语言处理、人工智能和多域数据库应用的发展,对智能数据库查询系统的需求迅速增长。尤其是在中文语境中,实现准确的查询生成已成为金融、医疗保健和客户服务等行业的必需。现有的SQL生成方法难以解决中文语义解析、多域适应性及人机交互中语义一致性的问题,限制复杂查询的跨域处理。针对上述挑战,提出一种面向中文的多域人机交互式SQL生成算法MH-CSQL (Multi-domain Human-Computer Interaction for Chinese SQL Generation Algorithm),结合历史信息和课程学习技术以增强自然语言理解,并支持多域数据库以处理各种查询任务。实验结果表明,MH-CSQL在准确性和适应性方面均优于传统方法。此外,将人机交互模型的结果可视图展示,验证MH-CSQL在智能问答等领域的应用前景。
针对目前恶意软件检测分类方法在特征提取、检测准确率等方面面临的挑战,提出一种基于API分组重构与图像表示的恶意软件检测分类方法。首先,对恶意软件调用的API类别统一编号,将API指令序列中相同编号的API聚合为同一API组,根据恶意软件运行时各类API的首次调用顺序对API组重排序,将各API组的条目数记录为该类API对软件样本的贡献度。经分组重构后,各API组按序组织,其顺序为软件样本调用各类API的顺序。各API组内部有序,其内部各API的排列顺序即为软件样本对单个API的调用顺序。有序化的API分组有助于API指令序列信息的图像化表达。基于重组的API指令序列提取API编号作为全局特征列表、API贡献度作为局部特征列表、API顺序索引作为时序特征列表,对特征列表进行标准化与零填充,转化为统一尺寸的特征数组。其中,API编号能清晰地标识API类别,API贡献度可以表征该API的调用频繁程度,API顺序索引可区分各API被调用的顺序。然后,分别用3类特征数组填充RGB图像的3个通道,生成3通道的API编号贡献度及顺序索引特征图像(Feature image of API code devotion and sequential index,FimgCDS)。最后,将Fimg CDS特征图像输入自主构建的轻量型恶意软件特征图像卷积神经网络(malware feature image convolutional neural network,MficNN)分类器,实现对恶意软件的检测与分类。实验结果表明,本文方法在两类数据集上的检测分类准确率分别为98.66%和98.35%,具有较高的恶意软件检测分类性能指标和检测分类速度。
暂无评论