事故灾难事理图谱可以全面表达事故发展过程、各子事件信息及多种事件关系,为事故灾难分析提供知识服务。针对事故灾难事理图谱构建中存在的时空关系中文语料匮乏、中文词汇边界模糊导致事件抽取不准确、隐式事件关系难以识别的问题,提出一种顾及时空关系的事故灾难事理图谱构建方法。该方法首先设计了基于命名规律性的词汇增强事件抽取模型,感知实体名称规律以确定事件信息边界和类型,然后采用一种融合注意力和门控空洞卷积的关系识别方法,获取多维度文本特征来挖掘潜在事件关系,并建立了含时空关系的中文事故灾难语料库(Chinese disaster corpus with spatiotemporal relationship,CDCSTR)。在CDCSTR和中文突发事件语料库上进行实验,结果表明,事件抽取模型的F1值分别达到88.59%和78.49%;与现有方法相比,关系识别模型在CDCSTR上的4个任务性能均有提升,尤其是空间关系识别优势明显,取得了3.08%以上的性能领先。以成乐高速追尾事故为例进行验证,构建的事理图谱能展示现实场景下的事故演化过程和时空变化特征,辅助事故应急工作。
大数据时代的到来使得时空轨迹数据的规模和复杂度迅速增长,这对如何高效管理和查询时空轨迹数据提出了新的需求和挑战。图数据库在处理时空轨迹数据的建模、存储和管理方面具有独特优势。然而,随着路网时空轨迹数据规模的不断扩大,图数据库的查询性能也会随之下降。为应对这一挑战,本文提出了一种基于图数据库的路网时空轨迹建模与高效索引方法。该方法采用压缩线性参考(Compressed Linear Reference,CLR)模型对路网时空轨迹进行建模,并将其存储于图数据库中,在此基础上,进一步构建了一种高效的路网时空轨迹索引机制。该索引体系采用了三层时空索引结构,包括路网空间索引、时间索引和时空路径段索引。路网空间索引主要负责底层路段的高效检索,而时间索引与时空路径段索引则针对轨迹数据的时空特征进行精确定位和高效查询。该结构能够有效减少图数据库查询中节点的遍历,提高查询效率。此外,基于该索引结构的2种时空查询方法被开发以满足不同应用场景的需求。为验证所提出时空索引的有效性,本文基于人工合成的不同数量级路网时空轨迹数据进行了2种时空查询效率的对比。实验结果显示,本文提出的高效时空索引相比Nebula Graph原生图数据库索引,在时空窗口-时空路径相交查询中效率提升至少16.59倍,在时空路径-时空路径相交查询中效率提升至少2.74倍。这项研究为路网时空轨迹数据的高效管理和实时查询提供了新的解决方案,具有重要的理论和实际意义。
暂无评论