基础数学函数库是计算机系统非常关键的软件模块,然而国产申威平台上的长向量超越函数只能依靠循环调用系统标量函数来间接实现,该方法无法充分发挥申威平台SIMD扩展部件的计算性能。为了有效解决此问题,实现了申威平台基于SIMD扩展部件底层优化的长向量超越函数,提出了浮点计算融合算法,解决了两分支结构算法难以向量化的问题;提出了基于Estrin算法动态分组的大阶数多项式实现方法,提高了多项式汇编计算的流水性能。这是在国产申威平台上首次实现长向量超越函数库,提供的函数接口包含三角函数、反三角函数、对数函数、指数函数等。实验结果表明,双精度版本最大误差控制在3.5ULP(unit in the last place)以下,单精度版本最大误差控制在0.5ULP以下,该性能与申威平台直接循环调用系统标量函数相比有显著提高,平均加速比为3.71。
为深入分析恶意代码高层行为之间的逻辑关系,剖析恶意代码的工作机制,针对现有的基于语义的行为分析方法无法进一步抽象出更高层语义行为以及挖掘之间逻辑关系的缺陷,文中以行为事件为研究对象,提出了一种基于语义分析的恶意代码攻击图生成方法。首先,借助MITRE ATT&CK模型,设计了一种新的恶意代码行为分析模型——m-ATT&CK(Malware-Adversarial Tactics,Techniques,and Common Knowledges),该模型由恶意代码、行为事件、攻击战术及其之间的联系构成;然后,提出了基于F-MWTO(Fuzzy Method of Window Then Occurrence)的近似模式匹配行为映射算法,实现了恶意代码行为信息到m-ATT&CK模型的映射,并构建了隐马尔可夫模型挖掘攻击战术序列;最后,定义了恶意代码语义级攻击图并设计了其生成算法,结合已识别出的行为事件,还原恶意代码高层行为的上下文语义信息,生成恶意代码语义级攻击图。实验结果表明,基于以上方法得到的语义级攻击图能够清晰地展现恶意代码的工作机制以及攻击意图。
随着信息技术的快速发展,数据产生了爆炸式的增长,互联网上每天都会新增大量的简历数据。对求职者的简历进行分析,从中获取候选人的各类人员信息、所属行业类别和进一步的工作职位推荐是学者们所关注的问题。人工分析简历效率低下的问题,推动了自然语言处理(Natural Language Processing,NLP)技术在简历分析中的广泛应用。NLP利用人工智能和计算机技术来分析、理解和处理自然语言,可实现简历的自动化分析。文中调研了近10年来的相关文献,对NLP在简历分析中的应用环节及常用方法进行了梳理。首先,对自然语言处理进行了介绍;接着,从简历信息抽取、简历分类和简历推荐3个方面分析和归纳了自然语言处理在简历分析技术中的研究进展;最后,对简历分析的研究趋势作了预测并总结了全文。
暂无评论