针对当前深度神经网络在处理遥感影像语义分割过程中存在的模型庞大、处理耗时长、实时性低、小目标分割准确率不高的问题,提出了一种嵌入多重注意力机制的Multi-AttnDeepLabv3+(Multiple Attentionbased on DeepLabv3+)语义分割模型....
详细信息
针对当前深度神经网络在处理遥感影像语义分割过程中存在的模型庞大、处理耗时长、实时性低、小目标分割准确率不高的问题,提出了一种嵌入多重注意力机制的Multi-AttnDeepLabv3+(Multiple Attentionbased on DeepLabv3+)语义分割模型.该模型在编码部分使用轻量神经网络作为主干特征提取网络,加入混合注意力机制增强重要特征通道和空间像素的权值比重;在解码部分,在特征融合过程中加入通道压缩激活注意力模块,通过压缩激活操作再次增强重要特征通道的权重,提升模型分割准确率.该模型在多个数据集上取得较好的实验结果.在相同条件下,此模型训练速度较传统网络模型有明显提升.与同类型轻量级语义分割模型相比,该模型在提升分割效果上具备优势.
暂无评论