挖矿恶意软件会损害系统安全,缩减硬件寿命,以及造成大量电力消耗,实施对挖矿恶意软件的早期检测以及时阻止其损害对于维护系统安全至关重要。现有的基于动态分析的挖矿恶意软件早期检测方法未能兼顾检测的及时性和准确率。为及时且准确地检测挖矿恶意软件,将挖矿恶意软件运行初期所调用的一定长度的API(application programming interface)名称、API操作类别和调用API的DLL(dynamic link library)进行融合以更充分地描述其在运行初期的行为信息,提出AECD(API embedding based on category and DLL)词嵌入方法并进一步提出基于AECD词嵌入的挖矿恶意软件早期检测方法(CEDMA)。CEDMA以软件在运行初期所调用的一定长度的API序列为检测对象,使用AECD词嵌入和TextCNN(text convolutional neural network)建立检测模型来实施对挖矿恶意软件的早期检测。实验结果显示,CEDMA以软件运行后首次调用的长度为3000的API序列作为输入时,可分别以98.21%、96.76%的Accuracy值检测实验中已知和未知的挖矿恶意软件样本。
图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系的多视图多粒度图表示学习框架(multi-view and multi-granularity graph representation learning based on partial order relationships,MVMGr-PO),它通过从节点特征视图、图结构视图以及全局视图对节点进行综合评分,进而基于节点之间的偏序关系进行下采样操作。相比于其他图表示学习方法,MVMGr-PO可以有效地提取多粒度图结构信息,从而可以更全面地表征图的内在结构和属性。此外,MVMGr-PO可以集成多种图神经网络架构,包括GCN(graph convolutional network)、GAT(graph attention network)以及GraphSAGE(graph sample and aggregate)等。通过在6个数据集上进行实验评估,与现有基线模型相比,MVMGr-PO在分类准确率上有明显提升。
本文提出一种基于图互信息的池化算子——图互信息池化(graphical mutual information pooling,GMIPool)。GMIPool利用互信息神经估计度量节点及其对应的支撑图之间的图互信息(包括特征互信息和结构互信息),利用图互信息识别并保留图中...
详细信息
本文提出一种基于图互信息的池化算子——图互信息池化(graphical mutual information pooling,GMIPool)。GMIPool利用互信息神经估计度量节点及其对应的支撑图之间的图互信息(包括特征互信息和结构互信息),利用图互信息识别并保留图中的关键节点,构建更为紧凑的粗图。为确保原图和粗图在结构上的一致性,该方法利用节点之间的邻域关联性对粗图的结构进行修正。该方法在多个节点分类任务数据集上进行实验,验证了图互信息池化的有效性。
暂无评论