针对电力机车牵引变流器中故障率最高的单相脉宽调制(pulse width modulation,PWM)整流器,提出一种流形学习算法融合多域特征的故障诊断方法。根据整流器在不同工作状态下的时域、频域和时频域特征构建多域特征向量;采用Hessian局部线性嵌入(Hessian local linear embedding,HLLE)算法融合多域特征,根据故障样本数和聚类结果,解决高维数据中固有维数和最近邻数选取困难的问题,得到用于描述故障特征的最优低维特征向量,减少特征之间的冲突和冗余;采用支持向量机进行模式识别,实现对整流器的故障诊断。结果表明:对不同的输出电压,不同的训练和测试比,15种故障模式均具有较高的诊断率。与其他方法相比,本文方法具有较好的融合效果和较强的鲁棒性。
暂无评论