【目的】探究中红外光谱在预测内蒙古区域农田土壤有机碳含量的潜力。【方法】以中国内蒙古地区农田土壤为研究对象,在内蒙古东部、中部和西部主要农田分布区域采集了411个土壤样品作为测试样本,基于不同预处理组合筛选评价,分别建立偏最小二乘回归(PLSR)和支持向量机回归(SVR)土壤有机碳预测模型,来比较中红外光谱对不同区域和整体土壤有机碳的预测精度。【结果】①从整体预测效果来看,PLSR所对应的不同预处理方法组合中预测精度表现最佳的为归一化处理(Normalization)(R^(2)=0.8360,RMSEP=1.7928 g kg^(−1),RPD=2.4816),SVR所对应最佳预处理组合为多元散射校正(MSC)+MA平滑+中心化处理(Centralization)(R^(2)=0.7557,RMSEP=2.1881 g kg^(−1),RPD=2.0332)。②从不同区域预测效果来看,两种建模方法均表现为对东部农田土壤有机碳预测效果最好(SVR优于PLSR),其次为中部,对西部农田土壤有机碳预测效果最差(PLSR优于SVR),这主要由于土壤类型和碳含量差异导致。此外,我们发现SVR更适合对东部高有机碳农田土壤预测,而PLSR对西部、中部农田和整体土壤有机碳的预测效果更为准确。【结论】农田土壤类型、土壤碳含量差异和预处理方法选择对中红外光谱的预测效果均具有较大影响。基于中红外光谱技术建立的Normalization-PLSR定量预测模型对区域农田土壤有机碳具有较好的预测效果(R^(2)>0.80),可为该地区精准农业发展提供重要的理论支撑。
为对不同农用大棚类型信息进行识别分类和精细化提取,以内蒙古河套灌区不同大棚类型为研究对象,基于Sentinel-2A卫星数据,采用面向对象结合多层多尺度分割技术和阈值分类方法,对大棚类型信息进行提取并对最终提取结果展开精度评价和分析研究。首先利用尺度参数估计(Estimation of Scale Parameter2,ESP2)方法进行了分层分割并优选出最佳分割尺度,在各层最优分割尺度上进行光谱、指数、几何、纹理等特征的提取与优化,获取最优特征组合;然后运用多层多尺度分割阈值分类方法提取不同大棚类型信息。结果表明不同大棚类型信息总体精度达94.8%,kappa系数达0.93。其中:塑料大棚的制图精度和用户精度分别为95.3%和96.6%;单屋面温室大棚制图精度和用户精度分别为88.5%和92.6%。基于多层多尺度分割分类的信息提取方法分别考虑了不同地物最优分割尺度,在不同地物各自的最优分割尺度上提取其信息,以抑制过度分割或亚分割现象,从而降低错分或漏分。因此,高分辨率卫星数据与面向对象多层多尺度分割分类的信息提取方法能够有效提高大棚类型信息提取精度,且能为地物信息精细提取技术体系提供一定参考思路。
暂无评论