由于拥有―C(O)S―和―NCO基团,FC(O)SNCO的分子和电子结构是非常有趣的.利用FC(O)SCl和Ag NCO制备了FC(O)SNCO,并利用He I光电子能谱(PES)、光电离质谱(PIMS)以及理论计算研究了其分子和电子结构.通过将实验、理论计算以及自然键轨道(NBO)分析结合起来,获得了FC(O)SNCO的最稳定分子构型.利用外壳层格林函数(OVGF)方法以及与相似化合物的比较,对其光电子能谱进行了指认.理论计算表明,对于中性分子最稳定的构型为syn-syn非平面构型,而电离后的离子最稳定构型为syn-syn平面构型.实验结果表明,第一电离能来自于S的孤对电子轨道,为10.33 e V.第二至第六电离能分别为12.03、13.23、13.77、14.78、15.99 e V,并对这些电离能进行了指认.在光电离质谱中产生了六个质谱峰,分别为SN+、FC(O)+、SNCO+、FC(O)SN+、C(O)SNCO+、FC(O)SNCO+,其中FC(O)SNCO+的峰是最强峰.结合HeI光电子能谱和理论计算,对PIMS进行了分析,并研究了可能的电离和解离过程并对其进行了讨论.
A glyceride containing three ferulic groups was first synthesized in order to investigate intermolecular synergistic antioxidant activity. The antioxidant activity was evaluated via a radical-scavenging reaction of D...
详细信息
A glyceride containing three ferulic groups was first synthesized in order to investigate intermolecular synergistic antioxidant activity. The antioxidant activity was evaluated via a radical-scavenging reaction of DPPH˙ radical. Although the scavenging capacities of both antioxidants, ferulic acid and glyceride tri-ferulate, were roughly equal, the apparent activation energy(Ea) of 19.50 kJ/mol for glyceride tri-ferulate is obviously lower than that of 28.80 kJ/mol for ferulic acid. The synergistic effect on Ea was further explained by a parallel π-π-stacking interaction.
The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by...
详细信息
The authors have studied the spectroscopic characteristics and the fluorescence lifetime for the chloroplasts from spinach (Spinacia oleracea L.) and water hyacinth (Eichhornia crassipes (Mart) Solms.) plant leaves by absorption spectra, low temperature steady_state fluorescence spectroscopy and single photon counting measurement under the same conditions. The absorption spectra at room temperature for the spinach and water hyacinth chloroplasts are similar, which show that different plants can efficiently absorb light of same wavelength. The low temperature steady_state fluorescence spectroscopy for the water hyacinth chloroplast reveals a poor balance of photon quantum between two photosystems. The fluorescence decays in PSⅡ measured at the natural Q A state for the chloroplasts have been fitted by a three_exponential kinetic model. The slow lifetime fluorescence component is assigned to a collection of associated light harvesting Chl a/b proteins, the fast lifetime component to the reaction center of PSⅡ and the middle lifetime component to the delay fluorescence of recombination of P + 680 and Pheo -. The excited energy conversion efficiency (η) in PSⅡ RC is 87% and 91% respectively for the water hyacinth and spinach chloroplasts calculated on the 20 ps model. This interesting result is not consistent with what is assumed that the efficiency is 100% in PSⅡ RC. The results in this paper also present a support for the 20 ps electron transfer time constant in PSⅡ RC. On the viewpoint of excitation energy conversion efficiency, the growing rate for the water hyacinth plan is smaller than that for the spinach plant. But, authors' results show those plants can perform highly efficient transfer of photo_excitation energy from the light_harvesting pigment system to the reaction center (approximately 100%).
暂无评论