海关商品HS编码分类是企业和个人进出口贸易的重要国际程序。HS编码分类可以看作是一个文本分类问题,即给定一段商品的描述,确定商品由HS编码表示的所属类别。然而,该任务比一般的文本分类任务更具挑战性,原因是商品描述文本具有特定的层次结构,同时商品描述文本展现出了两个层次上的序列特征,并且商品描述文本还存在关键信息分散且描述形式多样的特点。现有的文本分类方法无法综合考虑以上因素来捕获商品描述文本中的关键信息。对此,文中提出了一种融合文本序列和图信息的神经网络(Text Sequence and Graph Information combination Neural Network,TSGINN)模型,用于解决海关商品HS编码分类问题。TSGINN将HS编码分类问题定义为基于词共现网络的子图分类问题,通过图注意力网络建模非连续词之间的关联关系,同时利用分层的长短期记忆网络结合商品文本层次结构捕获多层次的序列信息。在真实海关商品数据集上进行了实验,结果表明TSGINN模型的HS编码分类效果优于其他分类方法。
基于行驶轨迹全球导航卫星系统(GNSS)数据,提出了出租车运动学片段提取规则和方法。根据主成分分析(PCA)及累积贡献率,确定了8个表征运动学片段的关键指标;结合K‒均值聚类算法,挖掘出租车运动特征模式。为了确保运动特征模式关键指标权重的客观合理性,采用考虑指标关联性的CRITIC(criteria importance through intercriteria correlation)法和考虑指标离散程度的熵权法,构建了基于纳什均衡的组合赋权的多准则妥协解排序(VIKOR)评价模型,用于多时空情景下出租车运动特征模式评价和出租车行驶状态研判。结果表明,基于纳什均衡的组合赋权法可以有效融合CIRTIC法与熵权法对评价指标的优势,获得更合理的权重系数。就安全性、效率和舒适性而言,出租车行驶状态在主干路和次干路上优于在支路上。早高峰出租车行驶安全性最佳,平峰和晚高峰相对一般。
暂无评论