随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道...
详细信息
随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型.
智能网联车辆队列行驶面临复杂的交通环境,所引发的时延、丢包等信息传输问题将导致队列车辆行驶稳定性降低而亟待解决.针对复杂交通环境,引入信息新鲜度(age of information, AoI)并提出了一种适应时变时延的智能网联车辆队列行驶稳定...
详细信息
智能网联车辆队列行驶面临复杂的交通环境,所引发的时延、丢包等信息传输问题将导致队列车辆行驶稳定性降低而亟待解决.针对复杂交通环境,引入信息新鲜度(age of information, AoI)并提出了一种适应时变时延的智能网联车辆队列行驶稳定性控制算法.该控制算法根据队列中多前车信息新鲜度来调整其对队列车辆车头间距影响的权重,同时依据时变时延信息预测队列中跟驰车辆与前车的车头间距,队列车辆按照请求周期向路侧单元(road side unit, RSU)实时发送请求,RSU依据车辆间距从小到大依次回应请求队列中的各个车辆,以控制其因时变时延可能造成的碰撞.数值仿真结果显示,相对智能驾驶员模型(intelligent driver model, IDM)而言,所提出的队列纵向稳定性控制算法具有更好的控制效果.针对时变时延发生概率20%的车车通信,队列车辆车头间距偏差的降低比例达6.4%,平均峰值信息新鲜度的降低比例达8.7%.同时,分析了队列车辆请求周期和回应请求车辆数量对队列纵向稳定性的影响,随着两者数值增加,控制算法给出的队列纵向稳定性分别呈现降低和增加的趋势.最后,实车测试了队列切出场景下车辆行驶数据和车辆接收信息的时延数据,将其引入数值仿真实验中.结果表明,车头间距偏差降低比例达15%.
暂无评论