In order to classify the Intemet traffic of different Internet applications more quickly, two open Internet traffic traces, Auckland I1 and UNIBS traffic traces, are employed as study objects. Eight earliest packets w...
详细信息
In order to classify the Intemet traffic of different Internet applications more quickly, two open Internet traffic traces, Auckland I1 and UNIBS traffic traces, are employed as study objects. Eight earliest packets with non-zero flow payload sizes are selected and their payload sizes are used as the early-stage flow features. Such features can be easily and rapidly extracted at the early flow stage, which makes them outstanding. The behavior patterns of different Intemet applications are analyzed by visualizing the early-stage packet size values. Analysis results show that most Internet applications can reflect their own early packet size behavior patterns. Early packet sizes are assumed to carry enough information for effective traffic identification. Three classical machine learning classifiers, classifier, naive Bayesian trees, i. e., the naive Bayesian and the radial basis function neural networks, are used to validate the effectiveness of the proposed assumption. The experimental results show that the early stage packet sizes can be used as features for traffic identification.
暂无评论