说话人视频的情感编辑是计算机视觉和图形学当前研究热点之一,其目的是将一段中性情感的人物说话视频转为带有目标情感的说话视频.已有的方法难以同时兼顾高清晰度情感编辑、人脸三维属性的保持以及模型对不同目标人物的适用性.为同时满足上述要求,本文提出基于Basel人脸模型(Basel face model,BFM)条件的几何编辑网络作为几何情感编辑模块,保证了几何编辑在不同目标人物场景下的通用性;提出了基于人物分类器的纹理情感编辑模块,使得精细纹理的编辑可以迁移到多人任务之中,突破了以往情感编辑模型仅适用特定目标人物或适用多人模型生成质量不高的局限性.本文提出的模型可以实现连续控制情感编辑强度的效果.实验结果表明,本文提出的通用情感编辑模型在多人任务上的清晰度、人物保真度、情感编辑质量等各项指标均优于已有可适用于多人情感编辑的方法,并且在训练集中未出现的目标人物上也能实现自然的情感编辑,甚至在未见的人脸位姿的说话视频中也能获得合理的结果.
移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface, GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技...
详细信息
移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface, GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技术以提升测试效率并检测潜在缺陷.收集了145篇相关论文,系统地梳理、分析和总结现有工作.提出了“测试生成器-测试环境”研究框架,将该领域的研究按照所属模块进行分类.特别地,依据测试生成器所基于的方法,将现有方法大致分为基于随机、基于启发式搜索、基于模型、基于机器学习和基于测试迁移这5个类别.此外,还从缺陷类别和测试动作等其他分类维度梳理现有方法.收集了该领域中较有影响力的数据集和开源工具.最后,总结当前面临的挑战并展望未来的研究方向.
暂无评论