目前自闭症功能磁共振(functional magnetic resonance imaging,fMRI)图像分类模型在跨多个机构的数据集下分类精度较低,难以应用到自闭症的诊断工作中。为此,本文提出了一种基于Transformer的自闭症分类模型(autism spectrum disorder ...
详细信息
目前自闭症功能磁共振(functional magnetic resonance imaging,fMRI)图像分类模型在跨多个机构的数据集下分类精度较低,难以应用到自闭症的诊断工作中。为此,本文提出了一种基于Transformer的自闭症分类模型(autism spectrum disorder classification model based on Transformer,TransASD)。首先采用脑图谱模板提取fMRI数据中的时间序列输入Transformer模型,并引入一种重叠窗口注意力机制,能够更好地捕捉异构数据的局部与全局特征。其次,提出了一个跨窗口正则化方法作为额外的损失项,使模型可以更加准确地聚焦于重要的特征。本文使用该模型在公开的自闭症数据集ABIDE上进行实验,在10折交叉验证法下得到了71.44%的准确率,该模型对比其他先进算法模型取得了更好的分类效果。
随着信息技术的快速发展,数据安全问题日益受到重视。本文提出了一种可验证的秘密分享方案,该方案基于Shamir秘密分享方案,并结合NTRU数字签名算法,增强方案的安全性。NTRU数字签名算法作为一种能够抵抗量子攻击的数字签名算法,有效防御了伪造和篡改攻击,确保了秘密恢复过程的可信度。本文详细分析了方案的正确性和安全性。With the rapid development of information technology, data security issues are increasingly being taken seriously. This paper proposes a verifiable secret sharing scheme based on the Shamir secret sharing scheme and combined with the NTRU digital signature algorithm to enhance the security of the scheme. The NTRU digital signature algorithm, as a type of digital signature algorithm capable of resisting quantum attacks, effectively defends against forgery and tampering attacks, ensuring the credibility of the secret recovery process. This paper provides a detailed analysis of the correctness and security of the scheme.
针对智能巡检方法难以有效应对复杂环境而导致巡检效率低下、漏检率高的问题,提出智能机器人巡检油气管道异常状态激光点云定位预警方法。设计智能巡检机器人,包括机械摇臂、密封舱和框架结构模块。采用3维激光扫描仪收集管道数据,3维激光同时定位与地图构建(simultaneous localization and mapping,SLAM)技术中激光雷达里程计与建图系统(lightweight and ground-optimized lidar odometry and mapping,LeGO-LOAM)算法进行改进,实现机器人同步定位与建图,结合卷积神经网络评估管道状态并预警定级。实验结果表明,该方法能准确检测管道防腐层状况、裂缝和变形等异常,检测数量与实际一致,巡检率、预警率超99.8%,漏检率和虚警率低于0.3%,路径规划高效,整体巡检性能优异。
暂无评论