针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic s...
详细信息
针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;其次在空间细节分支设计混合空洞卷积块,在卷积核大小不变的情况下扩大感受野,以获取更多全局空间细节信息,弥补关键特征信息损失。然后重新设计特征融合模块,引入深度聚合金塔池化,将不同尺度的特征图深度融合,从而提高网络的语义分割性能。最后将所提出的方法在CamVid数据集和Vaihingen数据集上进行实验,通过与最新的语义分割方法对比分析可知,GaSeNet在分割精度上分别提高了4.29%、16.06%,实验结果验证了本文方法处理实时语义分割问题的有效性。
近年来,中国冷链物流行业进入快速发展阶段,冷链基础设施建设与市场需求量呈不断增长态势,同时也伴随着温室气体排放量的增加。为满足未来低碳经济发展要求,绿色低碳转型成为中国冷链行业高质量健康发展的新特征与新方向,但前提基础是精确认知低碳冷链物流发展状况。鉴于此,本文首先从能源转型、技术创新、经济效益、国家政策四个层面构建中国低碳冷链物流发展评价体系,并针对不同指标进行权重以及障碍度分析,探究不同指标对低碳冷链物流发展的影响度;其次,采用熵权-优劣解距离法(Technique for Order Preference by Similarity to Ideal Solution,TOPSIS)评价模型对中国2017至2021年低碳冷链物流发展情况进行评分,确定中国低碳冷链物流发展情况。研究结果表明,在不同指标中,绿色包装材料使用增长率、低碳技术论文发表数、科研人员占比、生鲜农产品冷链物流需求量增长率、氢氯氟烃制冷剂缩减率权重占比分别达到0.1243、0.1074、0.1066、0.0982、0.0716,对中国低碳冷链物流发展影响较大;2017至2021年间,中国低碳冷链物流发展水平评分从0.1498到0.2359,同比增长约57.5%;中国低碳冷链物流发展虽总体呈现上升趋势,但依旧处于发展阶段。
暂无评论