针对兽药致病知识图谱构建过程中,关于兽药命名实体识别使用传统方法依赖人工设计特征耗时耗力以及兽药致病语料数据量较少的问题,提出一种引入注意力机制(Attention)与辅助层分类(Auxiliary layer)相结合兽药文本命名实体识别模型(At-tAux-BERT-BiLSTM-CRF)。通过BERT预处理模型进行文本向量化,然后连接双向长短期记忆网络(Bi-directional long-short term memory,BiLSTM);引入注意力机制,将模型的BERT层输出用作辅助分类层,BiLSTM层输出作为主分类层(Mainlayer),通过注意力机制组合以提高整体性能;最后输入条件随机场(Conditional random field,CRF),构建端到端的适合于兽药领域实体识别的深度学习模型框架。实验选取兽药文本共10643个句子、485711个字符,针对动物、药物、不良反应、摄入方式4类实体进行识别。实验结果表明,本文模型能有效地辨别兽药致病文本中的实体,识别的F1值为96.7%。
传统的优化控制方法很难在浮选过程状态发生变化时准确、快速做出决策,导致精矿品位和尾矿品位大幅度波动、出现产品质量不稳定.此外,浮选过程难以对精矿品位进行在线检测,导致其实用性下降.针对上述问题采用混合模型对浮选过程建模,并基于示例的安全增强值评估(safety augmented value estimation from demonstrations,SAVED)的强化学习算法,控制浮选溢出气泡的尺寸分布,从而间接实现对精矿品位和尾矿品位的控制.通过仿真实验验证了所提算法的有效性.与人工经验和数据驱动模型相比,基于混合模型的SAVED算法在保证安全约束的条件下能够实现更好的控制效果.
暂无评论