人类营养健康命名实体识别旨在检测营养健康文本中的营养实体,是进一步挖掘营养健康信息的关键步骤。虽然深度学习模型广泛应用在人类营养健康命名实体识别中,但没有充分考虑到营养健康文本中含有大量的复杂实体而出现长距离依赖的特点,且未能充分考虑词汇信息和位置信息。针对人类营养健康文本的特点,该研究提出了融合规则与BERT-FLAT(Bidirectional Encoder Representations from Transfromers-Flat Lattice Transformer,转换器的双向编码器表征量-平格变压器)模型的营养健康文本命名实体识别方法,识别了营养健康领域中食物、营养物质、人群、部位、病症和功效作用6类实体。首先通BERT模型将字符信息和词汇信息进行嵌入以提高模型对实体类别的识别能力,再通过位置编码与词汇边界信息结合的Transformer模型进行编码以提高模型对实体边界的识别效果,利用CRF(Coditional Random Field,条件随机场)获取字符预测序列,最后通过规则对预测序列进行修正。试验结果表明,融合规则与BERT-FLAT模型的人类营养健康领域识别的准确率为95.00%,召回率为88.88%,F1分数为91.81%。研究表明,该方法是一种有效的人类营养健康领域实体识别方法,可以为农业、医疗、食品安全等其他领域复杂命名实体识别提供新思路。
大语言模型(LLMs,Large Language Models)具有极强的自然语言理解和复杂问题求解能力,本文基于大语言模型构建了矿物问答系统,以高效地获取矿物知识。该系统首先从互联网资源获取矿物数据,清洗后将矿物数据结构化为矿物文档和问答...
详细信息
大语言模型(LLMs,Large Language Models)具有极强的自然语言理解和复杂问题求解能力,本文基于大语言模型构建了矿物问答系统,以高效地获取矿物知识。该系统首先从互联网资源获取矿物数据,清洗后将矿物数据结构化为矿物文档和问答对;将矿物文档经过格式转换和建立索引后转化为矿物知识库,用于检索增强大语言模型生成,问答对用于微调大语言模型。使用矿物知识库检索增强大语言模型生成时,采用先召回再精排的两级检索模式,以获得更好的大语言模型生成结果。矿物大语言模型微调采用了主流的低秩适配(Low-Rank Adaption,LoRA)方法,以较少的训练参数获得了与全参微调性能相当的效果,节省了计算资源。实验结果表明,基于检索增强生成的大语言模型的矿物问答系统能以较高的准确率快捷地获取矿物知识。
暂无评论