为提高生物资产监盘审计过程中盘点准确性和盘点效率,提出了一种融入注意力机制和损失函数优化的生物资产检测模型YOLOSC。首先,将压缩-激励网络(squeeze-and-excitation networks,SENet)注意力机制引入YOLOv5s模型的主干网络中,以增强对生物资产图片中关键特征的提取能力;其次,采用完全交并比(complete intersection over union,CIoU)作为检测框回归的损失函数,以提升训练过程中检测框的回归速度与定位精度;最后,构建了一个生物资产数据集对所提模型进行针对性训练,以提升模型检测效果。实验结果表明,相较于YOLOv5模型,YOLOSC的精确率、召回率、F_(1)和AP分别提升了2.3%、2.1%、2.7%和1.6%,证明了所提出的生物资产检测模型YOLOSC的有效性。
义原作为最小的语义单位对于标题生成任务至关重要。尽管义原驱动的神经语言模型(SDLM)是主流模型之一,但它在处理长文本序列时编码能力有限,未充分考虑位置关系,易引入噪声知识进而影响生成标题的质量。针对上述问题,提出一种基于Transformer的生成式标题模型Tran-A-SDLM(Transformer Adaption based Sememe-Driven Language Model with positional embedding and knowledge reasoning)。该模型充分结合自适应位置编码和知识推理机制的优势。首先,引入Transformer模型以增强模型对文本序列的编码能力;其次,利用自适应位置编码机制增强模型的位置感知能力,从而增强对上下文义原知识的学习;此外,引入知识推理模块,用于表示义原知识,并指导模型生成准确标题;最后,为验证Tran-A-SDLM的优越性,在大规模中文短文本摘要(LCSTS)数据集上进行实验。实验结果表明,与RNN-context-SDLM相比,Tran-A-SDLM在ROUGE-1、ROUGE-2和ROUGE-L值上分别提升了0.2、0.7和0.5个百分点。消融实验结果进一步验证了所提模型的有效性。
暂无评论