为了减少动态目标对移动机器人视觉同步定位与地图构建(simultaneous localization and mapping,SLAM)系统性能的影响,提出了一种基于语义分割和光流的视觉SLAM方法。首先,融合卷积神经网络MobileNetV2和语义分割网络DeepLabv3+提取动...
详细信息
为了减少动态目标对移动机器人视觉同步定位与地图构建(simultaneous localization and mapping,SLAM)系统性能的影响,提出了一种基于语义分割和光流的视觉SLAM方法。首先,融合卷积神经网络MobileNetV2和语义分割网络DeepLabv3+提取动态目标特征,使特征提取网络模型轻量化;然后,利用改进的DeepLabv3+结合Lucas-Kanade光流法实现对环境中动态目标的检测与剔除,获取静态目标上的特征点并进行匹配与位姿估计;最后,在关键帧上使用时间加权多帧融合技术,对动态目标遮挡的部分进行背景修复,为重定位环节提供更准确的匹配信息,进一步提升定位精度。在TUM RGB-D动态场景数据集上的实验结果表明,与ORB-SLAM2相比,该视觉SLAM算法在保证系统实时性的同时,使得定位精度提升约97%,明显降低了绝对轨迹误差和相对位姿误差,有效消除了动态目标对位姿估计的影响,提升了SLAM系统位姿估计的准确性和鲁棒性。
涡流脉冲热像(Eddy current pulsed thermography,ECPT)技术是一种新型的无损检测方法,广泛应用于金属材料结构的检测,但该技术常依赖人工经验提取特征进行裂纹检测与识别,自动化和智能性化程度不足。结合涡流脉冲热像技术以及循环神经...
详细信息
涡流脉冲热像(Eddy current pulsed thermography,ECPT)技术是一种新型的无损检测方法,广泛应用于金属材料结构的检测,但该技术常依赖人工经验提取特征进行裂纹检测与识别,自动化和智能性化程度不足。结合涡流脉冲热像技术以及循环神经网络(Recurrent Neural Network,RNN)的特性,提出一种基于双向长短期记忆网络(Bidirectional Long Short-Term Memory Network,Bi-LSTM)金属疲劳裂纹涡流脉冲热像分类识别方法。实验通过涡流加热装置对被测金属试件进行感应加热,使用红外热像采集装置对金属平板试件进行实时的数据采集,获得图像序列并制作数据集。运用设计的Bi-LSTM模型增强特征向量中的时序信息,对不同尺寸裂纹的热图像进行训练并测试。实验分析表明,Bi-LSTM网络可有效应用于金属疲劳裂纹检测与识别,针对现有裂纹检测准确率可达到100%,优于传统神经网络和其他深度学习的模型,具有更高的识别精度。
暂无评论