恶意评论识别本质上是一个文本分类的问题。相较传统的文本分类,恶意评论往往伴随着表达方式更微妙且随意的特点,使得传统文本分类网络识别精度不高、识别效果不好,无法达到需求。为解决上述问题,本文提出一种结合交叉注意力机制的双通道文本分类网络(Two-channel text classification network combined with cross-attention mechanism, CA2TC)。该模型同时使用图卷积神经网络(Graph Convolutional Network,GCN)和双向长短期记忆网络(Bidirectional Long Short-term Memory, BiLSTM)获得两种不同的文本上下文特征信息,两种不同的特征信息可以从多个角度更好表达文本的含义。提出的交叉注意力机制对双通道提取的文本特征进行精炼并融合。最后将精炼特征拼接后经全连接层再送入softmax进行分类。本文采用微博收集的恶意评论数据对提出的方法进行实验验证。实验结果表明,与一些主流的分类模型相比,提出的模型识别效果更优,分类精度较主流分类模型相比提高1.06%至2.89%。CA2TC模型能够充分提取恶意评论文本特征,从而有效识别恶意评论。
[目的]通过调研和梳理文献,总结考虑知识特征的序列推荐方法。[文献范围]以“Sequential Recommendation*Knowledge”和“序列推荐*知识”作为高级检索词在Web of Science、DBLP、谷歌学术、中国知网等数据库中进行文献检索,最终筛选...
详细信息
[目的]通过调研和梳理文献,总结考虑知识特征的序列推荐方法。[文献范围]以“Sequential Recommendation*Knowledge”和“序列推荐*知识”作为高级检索词在Web of Science、DBLP、谷歌学术、中国知网等数据库中进行文献检索,最终筛选出100篇文献进行评述,在筛选过程中,还特别关注了具体章节的核心内容,以确保所选文献满足研究需要。[方法]利用文献调研的方法,从研究框架、现实应用与评价、未来研究趋势三个方面对知识特征的序列推荐方法进行归纳与梳理。[结果]针对知识特征在序列推荐中的应用,构建“知识特征表达-时间知识增强-知识特征的序列推荐算法”的研究框架,从“数据集-评价指标-基线模型”三个方面深入分析现有评价资源的不足,并对未来研究进行展望。[局限]鉴于知识特征在序列推荐领域的重要性日益凸显,本文评述了考虑知识特征的序列推荐方法的相关研究。但由于研究领域广泛,文献众多,未能涵盖所有相关研究。[结论]考虑知识特征的序列推荐算法提高了推荐的准确性,多模态知识特征的融入,有助于深入了解用户需求。
暂无评论