【目的】解决基于深度学习的实体关系抽取方法在古籍小样本场景下,由于依赖大规模标注数据而导致的微调效率低、抽取性能不佳问题。【方法】提出一种基于提示学习和抽取式阅读理解的古籍礼仪实体关系联合抽取方法。首先,将实体识别和关系抽取任务整合至一个抽取式阅读理解框架中,简化模型结构。然后,利用领域知识设计三种轻量级提示策略,有效降低联合抽取任务的复杂度。最后,基于预训练语言模型和全局指针网络构建古籍礼仪实体关系联合抽取模型MPG-GP(MRC-Prompt-GujiBERT with Global Pointer),有效抽取古籍中的礼仪实体关系三元组。【结果】在构建的古籍礼仪实体关系联合抽取数据集上进行实验,本文方法F1值比基线方法提升了0.32~6.05个百分点。【局限】在构建提示模板时,未采用可学习的软提示方式,并且提示设计仍有进一步优化的空间。【结论】所提方法能够有效缓解深度神经网络对大量标注数据的依赖,提升了模型在小样本古籍礼仪实体关系联合抽取任务上的准确性,为古籍低资源场景信息抽取提供了新的方法和思路。
暂无评论