为了研究不同数据同化方法在AquaCrop(FAO Crop model to simulate yield response to water)模型模拟作物地上生物量(above ground biomass,AGB)、冠层覆盖度(canopy cover,CC)和产量过程的效率,以冬小麦为研究对象,利用2012-2013、201...
详细信息
为了研究不同数据同化方法在AquaCrop(FAO Crop model to simulate yield response to water)模型模拟作物地上生物量(above ground biomass,AGB)、冠层覆盖度(canopy cover,CC)和产量过程的效率,以冬小麦为研究对象,利用2012-2013、2013-2014和2014-2015年冬小麦田间试验数据,将标定的Aqua Crop生长模型与遥感光谱信息相结合开展同化技术分析,应用粒子群优化(particle swarm optimization,PSO)、模拟退火(simulated annealing,SA)和复合型混合演化(shuffled complex evolution,SCE-UA)3种数据同化算法,以不同生育期、不同水分处理和不同氮肥水平的AGB和CC为双变量开展多同化算法的模拟分析,对3种数据同化算法的运算效率和同化结果进行对比分析。结果表明:1)3种数据同化算法达到的应度值0.26时,SCE-UA同化算法用时最少(833 s),SA数据同化算法用时最多(1433 s),表明SCE-UA同化算法效率最优,SA数据同化算法效率最低;2)不同生育期的同化结果,AGB的同化精度随着生育期的推进而降低,AGB的模拟值在拔节期和挑旗期高于实测值,被高估,在开花期和灌浆期被低估,总的AGB被低估;CC在拔节期和挑旗期被低估,在开花期和灌浆期被高估,总的CC被低估;3)不同水分处理的同化结果,AGB普遍被低估,CC在雨养(W0)条件下被高估,在正常灌溉(W1)和过量灌溉(W2)条件下被低估;产量均被低估;4)不同氮肥水平,AGB的模拟精度随着施N量的增加而降低,并且普遍被低估,CC普遍被高估,产量均被低估。以上结果表明,PSO、SA和SCE-UA 3种数据同化算法均能有效模拟冬小麦的AGB、CC和产量,其中SCE-UA数据同化算法无论在运算效率还是同化结果的精度上均优于PSO和SA数据同化算法。
为提高农业题材三维数字媒体内容制作效率,提出基于SPAD(soil and plant analyzer development)和生育期农学参数的作物叶片表观建模与可视化方法,并以玉米为例进行实际验证。将玉米叶片分成叶肉、一级叶脉、二级叶脉3种结构,首先获取...
详细信息
为提高农业题材三维数字媒体内容制作效率,提出基于SPAD(soil and plant analyzer development)和生育期农学参数的作物叶片表观建模与可视化方法,并以玉米为例进行实际验证。将玉米叶片分成叶肉、一级叶脉、二级叶脉3种结构,首先获取主要生育期下各结构表观材质(包括漫反射强度、透射强度、高光反射强度、粗糙度4种参数)及SPAD数据;之后构建各类表观材质参数与SPAD及生育期之间的定量化模型;再对玉米叶片纹理样式进行抽象,构建参数化的玉米纹理结构几何表达,并基于定量化模型为纹理结构分配表观参数;最后整合实时光照计算框架,对大田光环境下玉米表观进行可视化模拟。该文方法搭建了农业知识与三维可视化效果间的桥梁,使用户可以通过调整农学参数实现对作物叶片表观的快速、准确设计与制作,为农业题材的三维数字资源开发提供技术工具。
暂无评论