The Eu-doped SiO2-B2O3-NaF glass was prepared by sol-gel process, using tetraethoxy Silicane, boric acid and sodium fluoride as starting materials, 0.10 mol·L-1 EuCl3 solution as the dopant. The luminescent prope...
详细信息
The Eu-doped SiO2-B2O3-NaF glass was prepared by sol-gel process, using tetraethoxy Silicane, boric acid and sodium fluoride as starting materials, 0.10 mol·L-1 EuCl3 solution as the dopant. The luminescent properties of Eu3+ doped SiO2-B2O3-NaF phosphors were investigated. The phosphors showed prominent luminescence in pink, the strong emission of Eu3+ comes from electronic transition of 5D0-7F1(591 nm)and 5D0-7F2(615 nm),which derived from two transition modes of magnetic-dipole and electric-dipole .The peak intensity of 591nm in SiO2-B2O3-NaF matrix is much stronger than it in the other matrixes, it means that SiO2-B2O3-NaF has sensitization on the transition of 5D0-7F1 (Eu3+). If there are broad bonds in the range of 275~380 nm in the excitation spectrum of Eu3+ -doped SiO2-B2O3-NaF glass, the emission peak intensity should be intensified. It is because the electron migration CT band of O2--Eu3+. For all Eu3+ concentrations used, the investigation found that when the mass of fraction got to 29.19×10-3, the luminescence intensity reached the summit. And there is a phenomenon of concentration quenching. Investigation with the same concentration of Eu3+ at different annealed temperature, we found that the sample annealed at 400 ℃, the luminescence intensity achieved its maximum value, and Eu3+ in this matrix had a phenomenon of temperature quenching. The structural characterization of these luminescent materials was carried by used XRD and TEM. The result showed that the phosphor was in amorphous phase.
Our previous studies show that mid-FTIR spectroscopy can be used to distinguish malignant oral tissue from normal tissue under in vitro condition. Here, an in-situ FTIR spectroscopic measurement was performed to recor...
详细信息
Our previous studies show that mid-FTIR spectroscopy can be used to distinguish malignant oral tissue from normal tissue under in vitro condition. Here, an in-situ FTIR spectroscopic measurement was performed to record FTIR spectra of normal and malignant oral tissues including salivary gland, tongue, parotid gland, submandibular gland etc. during clinical examination. The FTIR spectra of various oral tissues were acquired when an ATR probe linked to the FTIR spectrometer via mid-IR optical fibers was pressed on the tissues of the patients. For example, a patient(male, 76 years old) with tumor on the left parotid and the corresponding normal tissue on the right parotid were measured and obvious differences were observed. The spectral features of normal tissue and tumor are in good agreement with the criteria established in our previous work. (1) 1 389 cm -1 band is quite strong in tumor, while the corresponding band in normal tissue is weaker than 1 452 cm -1 band. (2) In normal tissue, 1 250 cm -1 band is stronger, but the 1 250 cm -1 band disappeared in the skin of malignant tissue. The above results demonstrate that in vivo FTIR spectra are in good agreement with our previous results obtained under in vitro condition. We believe that in vivo FTIR spectroscopy, providing the first-hand information concerning whether the suspected tissue is cancerous or not, is helpful for doctors in clinical activity.
暂无评论