需求获取和建模是需求工程中的关键步骤,影响后续系统设计与实现.传统的需求获取和建模方法通常由需求提供者、需求分析师等多类干系人共同协作、反复迭代完成,需要耗费大量的人力.如何减轻需求提供者与需求分析师的负担、提高获取和建模的效率有着重要意义.现有工作中有的使用知识库来提供更多知识,以辅助获取或者建模,有的利用自然语言处理等技术对获取或者建模过程进行自动化,但是它们并没有减轻需求提供者的负担.利用大语言模型(large language models,LLMs)的生成能力,提供了一种人机协作的迭代式需求获取和建模框架ChatModeler.具体来说,根据真实世界中需求团队的分工及协作关系,将部分需求提供者、需求分析师等角色的工作由大语言模型承担,而需求提供者只需要进行确认.为大语言模型扮演的各种角色进行了提示词设计,该提示词会随需求的元模型而变化.ChatModeler在7个需求案例上与3种需求模型的自动建模方法进行了14组对比实验,证明了ChatModeler在降低需求提供者的负担和生成高质量需求模型2个方面上的优越性.
移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface, GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技...
详细信息
移动应用是近10年来兴起的新型计算模式,深刻地影响人民的生活方式.移动应用主要以图形用户界面(graphical user interface, GUI)方式交互,而对其进行人工测试需要消耗大量人力和物力.为此,研究者提出针对移动应用GUI的测试自动生成技术以提升测试效率并检测潜在缺陷.收集了145篇相关论文,系统地梳理、分析和总结现有工作.提出了“测试生成器-测试环境”研究框架,将该领域的研究按照所属模块进行分类.特别地,依据测试生成器所基于的方法,将现有方法大致分为基于随机、基于启发式搜索、基于模型、基于机器学习和基于测试迁移这5个类别.此外,还从缺陷类别和测试动作等其他分类维度梳理现有方法.收集了该领域中较有影响力的数据集和开源工具.最后,总结当前面临的挑战并展望未来的研究方向.
随着物联网技术的飞速发展与广泛部署,物联网领域的应用需求逐步从“万物互联”转变成“人-机-物”的感知融合.在众多感知技术之中,射频识别技术(radio frequency identification,RFID)作为物联网领域的核心技术之一,由于标签的轻量级...
详细信息
随着物联网技术的飞速发展与广泛部署,物联网领域的应用需求逐步从“万物互联”转变成“人-机-物”的感知融合.在众多感知技术之中,射频识别技术(radio frequency identification,RFID)作为物联网领域的核心技术之一,由于标签的轻量级、可标记、易部署等特征,成为“无源感知”的重要媒介.为深入剖析无源感知的研究方法,了解当前无源感知的研究进展,以基于RFID的无源感知研究为主要切入点,根据感知研究的一般流程,从感知渠道、感知方法、感知范畴以及感知应用这4个层面对近年来基于RFID的无源感知研究工作进行阐述和分析.我们着重在各个层面上分析相关技术的研究进展,比较不同技术在感知应用中的优势和劣势,总结当前阶段无源感知的主要研究趋势,并对未来发展方向进行展望.
暂无评论