为了提高多目标粒子群算法优化解的多样性和收敛性,提出了一种基于多样性信息和收敛度的多目标粒子群优化算法(Multiobjective Particle Swarm Optimization based on the Diversity Information and Convergence Degree,dicd MOPSO).首...
详细信息
为了提高多目标粒子群算法优化解的多样性和收敛性,提出了一种基于多样性信息和收敛度的多目标粒子群优化算法(Multiobjective Particle Swarm Optimization based on the Diversity Information and Convergence Degree,dicd MOPSO).首先,利用非支配解多样性信息评估知识库中最优解的分布状态,设计出一种全局最优解选择机制,平衡了种群的进化过程,提高了非支配解的多样性和收敛性;其次,基于种群多样性信息设计出一种飞行参数调整机制,增强了粒子的全局探索能力和局部开发能力,获得了多样性和收敛性较好的种群.最后,将dicd MOPSO应用于标准测试函数测试,实验结果表明,dicd MOPSO与其他多目标算法相比不仅获得了多样性较高的可行解,而且能够较快的收敛到Pareto前沿.
针对递归RBF神经网络结构难以自适应问题,提出一种基于递归正交最小二乘(recursive orthogonal least squares,ROLS)算法的结构设计方法。首先,利用ROLS算法来计算隐含层神经元的独立贡献度和损失函数,以此判断增加或归为不活跃组的神经...
详细信息
针对递归RBF神经网络结构难以自适应问题,提出一种基于递归正交最小二乘(recursive orthogonal least squares,ROLS)算法的结构设计方法。首先,利用ROLS算法来计算隐含层神经元的独立贡献度和损失函数,以此判断增加或归为不活跃组的神经元,同时调整神经网络的拓扑结构,并且利用奇异值分解(singular value decomposition,SVD)决定最佳的隐含层神经元个数,以此来删除不活跃组中相对不活跃的神经元,有效地解决了递归RBF神经网络结构冗余和难以自适应问题。其次,利用梯度下降算法更新递归RBF神经网络的参数来保证神经网络的精度。最后,通过对Mackey-Glass时间序列预测、非线性系统辨识和污水处理过程中关键水质参数动态建模,证明了该结构设计方法的可行性和有效性。
针对污水处理过程控制中能耗过大、出水水质超标严重等问题,提出了一种基于均匀分布的NSGAII(non-dominated sorting genetic algorithm II based on uniform distribution, UDNSGAII)多目标优化智能控制系统。首先,该方法以污水处理能...
详细信息
针对污水处理过程控制中能耗过大、出水水质超标严重等问题,提出了一种基于均匀分布的NSGAII(non-dominated sorting genetic algorithm II based on uniform distribution, UDNSGAII)多目标优化智能控制系统。首先,该方法以污水处理能耗和出水水质作为优化目标,建立多目标优化模型。其次,为了获得溶解氧和硝态氮的优化设定值,提高Pareto解的性能,该算法将种群映射到目标函数对应的超平面,并在该平面上进行聚类以增加解的多样性。此外,加入分布性判断模块和分布性加强模块提高解的分布性。最后,采用比例积分微分(proportional integral derivative, PID)控制器对溶解氧和硝态氮的优化设定值进行底层跟踪控制。为了验证该算法的有效性,采用国际基准的污水处理仿真平台(benchmark simulation model No.1, BSM1)来进行实验。结果显示,所提出的UDNSGAII多目标优化控制方法能够在满足出水水质达标的同时,有效地降低污水处理过程能耗。
暂无评论