针对基于关系边界框提取的谓词特征粒度相对较粗的问题,提出区域敏感的场景图生成(region-sensitive scene graph generation,RS-SGG)方法。谓词特征提取模块将关系边界框分为4个区域,基于自注意力机制抑制关系边界框中与关系分类无关...
详细信息
针对基于关系边界框提取的谓词特征粒度相对较粗的问题,提出区域敏感的场景图生成(region-sensitive scene graph generation,RS-SGG)方法。谓词特征提取模块将关系边界框分为4个区域,基于自注意力机制抑制关系边界框中与关系分类无关的背景区域。关系特征解码器在进行关系预测时不仅考虑了物体对的视觉特征和语义特征,也考虑了物体对的位置特征。在视觉基因组(visual genome,VG)数据集上分别计算了RS-SGG方法针对场景图生成、场景图分类和谓词分类3个子任务的图约束召回率和无图约束召回率,并与主流的场景图生成方法进行了比较。实验结果表明,RS-SGG的图约束召回率和无图约束召回率均优于主流方法。此外,可视化实验结果也进一步证明了所提出方法的有效性。
针对群智能聚类方法在蛋白质相互作用网络功能模块检测问题上运行时间长的不足,本文提出了一种基于烟花算法的蛋白质相互作用网络功能模块检测方法(Fireworks Algorithm for Functional Module Detection in Protein-protein Interactio...
详细信息
针对群智能聚类方法在蛋白质相互作用网络功能模块检测问题上运行时间长的不足,本文提出了一种基于烟花算法的蛋白质相互作用网络功能模块检测方法(Fireworks Algorithm for Functional Module Detection in Protein-protein Interaction Networks,简称FWA-FMD).首先结合蛋白质相互作用网络的拓扑结构信息和基因本体的功能注释信息,基于标签传播思想将每个烟花个体初始化为一种候选的功能模块划分.其次在每一代进化过程中,利用具有局部搜索和全局搜索自调整能力的爆炸操作对每个烟花个体进行优化,并同时采用精英保留和轮盘赌策略选择下一代烟花个体.最后通过将最优烟花个体中标签相同的节点划分到同一功能模块,以得到最终的功能模块检测结果.在酵母菌和人类两个物种的4个公共蛋白质相互作用网络数据集上的功能模块检测结果,分别用两种标准功能模块数据集作为基准来评价的实验表明:FWA-FMD算法不但求解时间少于遗传算法、蚁群算法和细菌觅食算法,而且在多项评价指标上与一些代表性算法相比都具有明显的优势,能够更好地识别功能模块.
大量有效样本标注是有监督学习性能的重要保证,但又存在耗时且人力成本高的问题.加之,在实际应用环境,很难在每个应用领域都有足够的标定样本数据支持分类器的训练.而将源领域所获的训练模型直接用于目标领域,又由于目标领域和源领域信息分布差异,会导致跨领域分类器应用准确率降低的问题.针对以上问题,提出一种基于多视角共享特征的领域空间对齐的跨领域情感分类(domain alignment based on multi-viewpoint domain-shared feature for cross-domain sentiment classification,DAMF)算法.该算法首先通过融合多个情感词典,消除通过互信息值所选择的领域共享特征中情感词的极性分歧问题.在此基础上,以领域间无歧义共享特征为桥梁,结合通过语法规则提取的各领域中有相同极性的情感词对和通过关联规则学习的各领域中有强关联关系的特征词对,进行领域间相同极性的专有情感词对和强关联关系的特征词对的提取,构建目标领域和源领域数据的统一特征表示空间,减小了领域间因极性分歧和特征分布不同造成的差异,实现不同领域空间对齐.同时在公共数据集上的跨领域实验表明,基于多视角共享特征的领域空间对齐跨领域倾向性分析算法一定程度上提高了跨领域情感分类的准确率.
暂无评论