针对回声状态网络(Echo state network,ESN)结构设计问题,提出一种基于脑网络的分层模块化回声状态网络(Hierarchical modular echo state network,HMESN)。脑网络的拓扑结构使功能网络具有丰富的动力学特性,因此,从生物仿生学角度出发,...
详细信息
针对回声状态网络(Echo state network,ESN)结构设计问题,提出一种基于脑网络的分层模块化回声状态网络(Hierarchical modular echo state network,HMESN)。脑网络的拓扑结构使功能网络具有丰富的动力学特性,因此,从生物仿生学角度出发,对HMESN的储备池进行分层设计,各层级上的神经元采用小世界网络构建算法生成模块化结构,并引入层级连接。基于脑网络分层模块化的拓扑特征弱化了神经元间的耦合程度,从而使神经元的动力学特性更为丰富,在功能与结构上更接近于真实生物神经网络,有效地提高了网络处理问题的能力。采用Mackey-Glass时间序列预测和非线性系统辨识对网络进行验证,证明该网络的有效性和可行性。
在污水处理过程中,出水总磷(Total Phosphorus,TP)是衡量污水处理效果的关键参数之一。本文针对目前出水TP难以实时测量的问题,提出了一种基于模糊神经网络(FNN)的出水TP软测量方法。该软测量方法通过实际运行数据,利用偏最小二乘法(Partial Least Squares,PLS)筛选出与出水TP相关性强的过程变量;同时,利用FNN建立了出水TP与相关性变量之间的软测量模型,并将该方法嵌入到污水处理运行系统。实验结果显示该软测量方法能够实现出水TP的实时预测,并且具有较好的预测精度。
针对差分算法(differential evolution,DE)在解决高维优化问题时参数设置复杂、选择变异策略困难的现象,提出了广义逆向学习方法的自适应差分进化算法(self-adaptive DE algorithm via generalized opposition-based learning,SDE-GOBL...
详细信息
针对差分算法(differential evolution,DE)在解决高维优化问题时参数设置复杂、选择变异策略困难的现象,提出了广义逆向学习方法的自适应差分进化算法(self-adaptive DE algorithm via generalized opposition-based learning,SDE-GOBL)。利用广义的逆向学习方法(generalized opposition-based learning,GOBL)来进行多策略自适应差分算法(Self-adaptive DE,Sa DE)的初始化策略调整,求出各个候选解的相应逆向点,并在候选解和其逆向点中选择所需要的最优初始种群,然后再进行自适应变异、杂交、选择操作,最后通过CEC2005国际竞赛所提供的9个标准测试函数对SDE-GOBL算法进行验证,结果证明该算法具有较快的收敛速度和较高的求解精度。
暂无评论