量子漫步算法能模拟游走粒子在图上的量子相干演化,粒子的运动状态由量子态的相干叠加而成.与经典随机游走算法相比,量子漫步算法具有寻找目标节点时间少和源节点扩散至其他节点时间少的优点.提出一种基于离散时间量子漫步的链路预测(link predictionbased on discrete time quantum walk,简称LP-DTQW)算法.研究结果表明:相对于其他7种算法,LP-DTQW算法有更高的预测精度;LP-DTQW算法的时间复杂度远低于经典RWR(random walk with restart)链路预测算法的时间复杂度.因此,LP-DTQW算法具有更强的预测性能.
为了解决弱纹理与遮挡区域中难以准确匹配对应点的问题,在马尔可夫随机场(Markov random field,MRF)框架下,提出一种结合卷积神经网络(convolutional neural network,CNN)与分割线索的立体匹配算法.首先,采用特征表达能力强的CNN提取立...
详细信息
为了解决弱纹理与遮挡区域中难以准确匹配对应点的问题,在马尔可夫随机场(Markov random field,MRF)框架下,提出一种结合卷积神经网络(convolutional neural network,CNN)与分割线索的立体匹配算法.首先,采用特征表达能力强的CNN提取立体图像特征并匹配区域块.同时,对图像进行区域分割.然后,基于CNN匹配结果构造MRF能量函数数据项.基于分割结果定义能量函数项,通过其他区域约束弱纹理和遮挡区域的匹配过程.最后,最优化求解能量函数计算视差.在Middlebury与KITTI数据集上验证该算法和能量函数各项的作用,并与近2年提出方法进行性能比较.结果表明,该算法准确度更高,应对弱纹理与遮挡区域效果更好.
暂无评论