为了实现城市污水处理过程各性能指标的优化运行,提出了一种动态分解多目标粒子群优化控制(optimal control based on dynamic decomposed multiobjective particle swarm optimization, OC-DDMOPSO)策略.首先,构建了基于自适应核函数...
详细信息
为了实现城市污水处理过程各性能指标的优化运行,提出了一种动态分解多目标粒子群优化控制(optimal control based on dynamic decomposed multiobjective particle swarm optimization, OC-DDMOPSO)策略.首先,构建了基于自适应核函数的运行性能指标模型,确定了优化运行目标.其次,设计了基于档案库动态分解的多目标粒子群优化算法,实时获取操作变量的优化设定值.最后,利用预测控制策略跟踪优化设定值,完成了城市污水处理过程优化控制.将提出的OC-DDMOPSO应用于基准仿真平台BSM1,实验结果显示,OC-DDMOPSO能够实现城市污水处理过程稳定运行,保证出水水质达标排放和降低运行成本.
为解决移动机器人未知环境下的路径规划问题,提出基于子目标搜索的机器人目标导向RRT (rapidly-exploring random trees)路径规划算法.一方面,针对传统RRT算法固有的盲目搜索问题,引入目标导向函数,形成目标导向RRT路径规划算法,这一改...
详细信息
为解决移动机器人未知环境下的路径规划问题,提出基于子目标搜索的机器人目标导向RRT (rapidly-exploring random trees)路径规划算法.一方面,针对传统RRT算法固有的盲目搜索问题,引入目标导向函数,形成目标导向RRT路径规划算法,这一改进可减少冗余搜索,提高路径规划效率;另一方面,为了使机器人在首次探索未知环境时也能顺利抵达目标点,提出3种不同情况下的子目标搜索策略,包括无障碍环境下的直达策略、扫到边界点时的最短距离策略和扫不到边界点时的后退策略,这3种策略使机器人能够完成对未知环境的探索,而且可以克服易出现的局部极小点问题,使机器人具有逃离局部极小环境的能力.仿真实验结果验证了所提出算法的可行性和有效性.
暂无评论