针对蚁群聚类在蛋白质相互作用(protein-protein interaction,PPI)网络中进行功能模块检测问题上时间性能的不足,提出一种快速的基于蚁群聚类的PPI网络功能模块检测(fast ant colony clustering for functional module detection,FACC-F...
详细信息
针对蚁群聚类在蛋白质相互作用(protein-protein interaction,PPI)网络中进行功能模块检测问题上时间性能的不足,提出一种快速的基于蚁群聚类的PPI网络功能模块检测(fast ant colony clustering for functional module detection,FACC-FMD)方法.该算法计算每个蛋白质与核心组蛋白质的相似度,根据拾起放下模型进行聚类,得到的初始聚类结果中功能模块之间相似度很小,省去了原始蚁群聚类算法中的合并和过滤操作,缩短了求解时间.同时该算法根据蛋白质的关键性对蚁群聚类中的拾起放下操作做了更严格的约束,以减少拾起放下的次数,加速了聚类的过程.在多个PPI网络上的实验表明:与原始蚁群聚类方法相比,FACC-FMD大幅度提高了时间性能,同时取得了良好的检测质量,而且与近年来的一些经典算法相比在多项性能指标上也具有一定的优势.
对于一次学习手势识别,噪声和全局经验运动约束严重影响时空特征的精确与充分提取,为此提出了一种融合颜色和深度(RGB-D)信息的自适应局部时空特征提取方法.首先建立连续两灰度帧和两深度帧的金字塔以及相应的光流金字塔作为尺度空间.然后根据灰度和深度光流的水平与垂直方差自适应提取运动感兴趣区域(motion regions of interest,MRo Is).接着仅在MRo Is内检测角点作为兴趣点,当兴趣点的灰度和深度光流同时满足局部运动约束时即为关键点,局部运动约束是在每个MRo I内自适应确定的.最后在改进的梯度运动空间计算SIFT-like描述子.Chalearn数据库上的实验结果表明:提出方法得到了较高的识别准确率,其识别性能优于现已发表的方法.
暂无评论