为了提高测试效率,提出一种基于集合覆盖的测试集约简方法.该方法对有限状态机(finite state machine,FSM)模型中经典的测试生成算法Wp方法(部分W方法)所生成的测试集进行冗余约简.通过分析Wp方法的特点,找出测试序列之间包含关系的规律...
详细信息
为了提高测试效率,提出一种基于集合覆盖的测试集约简方法.该方法对有限状态机(finite state machine,FSM)模型中经典的测试生成算法Wp方法(部分W方法)所生成的测试集进行冗余约简.通过分析Wp方法的特点,找出测试序列之间包含关系的规律,删除冗余的测试用例.理论分析和实验结果表明:该方法能够有效约简测试集,并且不改变故障检测能力.
由于传统RRT(rapidly-exploring random trees)路径规划算法固有的盲目探索的问题,机器人到达目标点时除起始点扩展到目标点的路径之外还会生成其他与结果无关的分支路径与节点,为使这些分支路径得到利用并且减少探索的盲目性,提出基于...
详细信息
由于传统RRT(rapidly-exploring random trees)路径规划算法固有的盲目探索的问题,机器人到达目标点时除起始点扩展到目标点的路径之外还会生成其他与结果无关的分支路径与节点,为使这些分支路径得到利用并且减少探索的盲目性,提出基于信息增益与RRT思想相结合的机器人环境探索策略.该方法对未知环境中的节点进行信息估计,选取具有最大信息增益的节点作为采样节点,且每次都会生成最大信息增益的新节点进行扩展.该策略使机器人能完成对未知环境的探索,还可以降低传统RRT算法固有的盲目性.仿真实验结果表明,所提出方法能够有效快速地帮助机器人探索未知环境,实现环境探索.
为解决移动机器人未知环境下的路径规划问题,提出基于子目标搜索的机器人目标导向RRT (rapidly-exploring random trees)路径规划算法.一方面,针对传统RRT算法固有的盲目搜索问题,引入目标导向函数,形成目标导向RRT路径规划算法,这一改...
详细信息
为解决移动机器人未知环境下的路径规划问题,提出基于子目标搜索的机器人目标导向RRT (rapidly-exploring random trees)路径规划算法.一方面,针对传统RRT算法固有的盲目搜索问题,引入目标导向函数,形成目标导向RRT路径规划算法,这一改进可减少冗余搜索,提高路径规划效率;另一方面,为了使机器人在首次探索未知环境时也能顺利抵达目标点,提出3种不同情况下的子目标搜索策略,包括无障碍环境下的直达策略、扫到边界点时的最短距离策略和扫不到边界点时的后退策略,这3种策略使机器人能够完成对未知环境的探索,而且可以克服易出现的局部极小点问题,使机器人具有逃离局部极小环境的能力.仿真实验结果验证了所提出算法的可行性和有效性.
暂无评论